Search Results

Search found 13033 results on 522 pages for '12 04'.

Page 131/522 | < Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >

  • Why won't my PHP script work?

    - by sadicool
    I have a script that reports the following error: Warning: mysql_connect() [function.mysql-connect]: Access denied for user 'admin'@'localhost' (using password: YES) in C:\wamp\www\bits\includes\connect.inc.php on line 10 Notice: Undefined variable: l_error in C:\wamp\www\bits\includes\connect.inc.php on line 12 Notice: Undefined variable: l_cannotconnecttodatabase in C:\wamp\www\bits\includes\connect.inc.php on line 12 Why would this be?

    Read the article

  • merging in python

    - by Abruzzo Forte e Gentile
    Hi all I have the following 4 arrays ( grouped in 2 groups ) that I would like to merge in ascending order by the keys array. I can use also dictionaries as structure if it is easier. Has python any command or something to make this quickly possible? Regards MN # group 1 [7, 2, 3, 5] #keys [10,11,12,26] #values [0, 4] #keys [20, 33] #values # I would like to have [ 0, 2, 3, 4, 5, 7 ] # ordered keys [20, 11,12,33,26,33] # associated values

    Read the article

  • Counting number of values between interval

    - by calccrypto
    Is there any efficient way in python to count the times an array of numbers is between certain intervals? the number of intervals i will be using may get quite large like: mylist = [4,4,1,18,2,15,6,14,2,16,2,17,12,3,12,4,15,5,17] some function(mylist, startpoints): # startpoints = [0,10,20] count values in range [0,9] count values in range [10-19] output = [9,10]

    Read the article

  • AJAX Closures and targeting 'this'

    - by Nick Lowman
    In the code example below the success callback function logs 'input#04.update' four times rather than each individual input, which makes sense seeing how closures work but how would I go about targeting each individual input using this. <input type="text" name="" id="01" class="update"> <input type="text" name="" id="02" class="update"> <input type="text" name="" id="03" class="update"> <input type="text" name="" id="04" class="update"> function updateFields(){ $('input.update').each(function(){ $this = $(this); $.ajax({ data: 'id=' + this.id, success: function(resp){ console.log($this); $this.val(resp) } }); }); }

    Read the article

  • Problem rendering VBO

    - by Onno
    I'm developing a game engine using OpenTK. I'm trying to get to grips with the use of VBO's. I've run into some trouble because somehow it doesn't render correctly. Thus far I've used immediate mode to render a test object, a test cube with a texture. namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class ImmediateFaceBasedCube : IMesh { private IList<Face> faces = new List<Face>(); public ImmediateFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: move vertex normal and texture data to datastructure //todo: VBO based rendering //top face //1 IList<VertexData> verticesT1 = new List<VertexData>(); VertexData T1a = new VertexData(); T1a.Normal = normals[0]; T1a.TexCoord = textureCoordinates[5]; T1a.Position = allVertices[3]; verticesT1.Add(T1a); VertexData T1b = new VertexData(); T1b.Normal = normals[0]; T1b.TexCoord = textureCoordinates[9]; T1b.Position = allVertices[0]; verticesT1.Add(T1b); VertexData T1c = new VertexData(); T1c.Normal = normals[0]; T1c.TexCoord = textureCoordinates[10]; T1c.Position = allVertices[1]; verticesT1.Add(T1c); Face F1 = new Face(verticesT1); faces.Add(F1); //2 IList<VertexData> verticesT2 = new List<VertexData>(); VertexData T2a = new VertexData(); T2a.Normal = normals[0]; T2a.TexCoord = textureCoordinates[10]; T2a.Position = allVertices[1]; verticesT2.Add(T2a); VertexData T2b = new VertexData(); T2b.Normal = normals[0]; T2b.TexCoord = textureCoordinates[6]; T2b.Position = allVertices[2]; verticesT2.Add(T2b); VertexData T2c = new VertexData(); T2c.Normal = normals[0]; T2c.TexCoord = textureCoordinates[5]; T2c.Position = allVertices[3]; verticesT2.Add(T2c); Face F2 = new Face(verticesT2); faces.Add(F2); //front face //3 IList<VertexData> verticesT3 = new List<VertexData>(); VertexData T3a = new VertexData(); T3a.Normal = normals[1]; T3a.TexCoord = textureCoordinates[1]; T3a.Position = allVertices[3]; verticesT3.Add(T3a); VertexData T3b = new VertexData(); T3b.Normal = normals[1]; T3b.TexCoord = textureCoordinates[0]; T3b.Position = allVertices[7]; verticesT3.Add(T3b); VertexData T3c = new VertexData(); T3c.Normal = normals[1]; T3c.TexCoord = textureCoordinates[5]; T3c.Position = allVertices[0]; verticesT3.Add(T3c); Face F3 = new Face(verticesT3); faces.Add(F3); //4 IList<VertexData> verticesT4 = new List<VertexData>(); VertexData T4a = new VertexData(); T4a.Normal = normals[1]; T4a.TexCoord = textureCoordinates[5]; T4a.Position = allVertices[0]; verticesT4.Add(T4a); VertexData T4b = new VertexData(); T4b.Normal = normals[1]; T4b.TexCoord = textureCoordinates[0]; T4b.Position = allVertices[7]; verticesT4.Add(T4b); VertexData T4c = new VertexData(); T4c.Normal = normals[1]; T4c.TexCoord = textureCoordinates[4]; T4c.Position = allVertices[4]; verticesT4.Add(T4c); Face F4 = new Face(verticesT4); faces.Add(F4); //right face //5 IList<VertexData> verticesT5 = new List<VertexData>(); VertexData T5a = new VertexData(); T5a.Normal = normals[2]; T5a.TexCoord = textureCoordinates[2]; T5a.Position = allVertices[0]; verticesT5.Add(T5a); VertexData T5b = new VertexData(); T5b.Normal = normals[2]; T5b.TexCoord = textureCoordinates[1]; T5b.Position = allVertices[4]; verticesT5.Add(T5b); VertexData T5c = new VertexData(); T5c.Normal = normals[2]; T5c.TexCoord = textureCoordinates[6]; T5c.Position = allVertices[1]; verticesT5.Add(T5c); Face F5 = new Face(verticesT5); faces.Add(F5); //6 IList<VertexData> verticesT6 = new List<VertexData>(); VertexData T6a = new VertexData(); T6a.Normal = normals[2]; T6a.TexCoord = textureCoordinates[1]; T6a.Position = allVertices[4]; verticesT6.Add(T6a); VertexData T6b = new VertexData(); T6b.Normal = normals[2]; T6b.TexCoord = textureCoordinates[5]; T6b.Position = allVertices[5]; verticesT6.Add(T6b); VertexData T6c = new VertexData(); T6c.Normal = normals[2]; T6c.TexCoord = textureCoordinates[6]; T6c.Position = allVertices[1]; verticesT6.Add(T6c); Face F6 = new Face(verticesT6); faces.Add(F6); //back face //7 IList<VertexData> verticesT7 = new List<VertexData>(); VertexData T7a = new VertexData(); T7a.Normal = normals[3]; T7a.TexCoord = textureCoordinates[4]; T7a.Position = allVertices[5]; verticesT7.Add(T7a); VertexData T7b = new VertexData(); T7b.Normal = normals[3]; T7b.TexCoord = textureCoordinates[9]; T7b.Position = allVertices[2]; verticesT7.Add(T7b); VertexData T7c = new VertexData(); T7c.Normal = normals[3]; T7c.TexCoord = textureCoordinates[5]; T7c.Position = allVertices[1]; verticesT7.Add(T7c); Face F7 = new Face(verticesT7); faces.Add(F7); //8 IList<VertexData> verticesT8 = new List<VertexData>(); VertexData T8a = new VertexData(); T8a.Normal = normals[3]; T8a.TexCoord = textureCoordinates[9]; T8a.Position = allVertices[2]; verticesT8.Add(T8a); VertexData T8b = new VertexData(); T8b.Normal = normals[3]; T8b.TexCoord = textureCoordinates[4]; T8b.Position = allVertices[5]; verticesT8.Add(T8b); VertexData T8c = new VertexData(); T8c.Normal = normals[3]; T8c.TexCoord = textureCoordinates[8]; T8c.Position = allVertices[6]; verticesT8.Add(T8c); Face F8 = new Face(verticesT8); faces.Add(F8); //left face //9 IList<VertexData> verticesT9 = new List<VertexData>(); VertexData T9a = new VertexData(); T9a.Normal = normals[4]; T9a.TexCoord = textureCoordinates[8]; T9a.Position = allVertices[6]; verticesT9.Add(T9a); VertexData T9b = new VertexData(); T9b.Normal = normals[4]; T9b.TexCoord = textureCoordinates[13]; T9b.Position = allVertices[3]; verticesT9.Add(T9b); VertexData T9c = new VertexData(); T9c.Normal = normals[4]; T9c.TexCoord = textureCoordinates[9]; T9c.Position = allVertices[2]; verticesT9.Add(T9c); Face F9 = new Face(verticesT9); faces.Add(F9); //10 IList<VertexData> verticesT10 = new List<VertexData>(); VertexData T10a = new VertexData(); T10a.Normal = normals[4]; T10a.TexCoord = textureCoordinates[8]; T10a.Position = allVertices[6]; verticesT10.Add(T10a); VertexData T10b = new VertexData(); T10b.Normal = normals[4]; T10b.TexCoord = textureCoordinates[12]; T10b.Position = allVertices[7]; verticesT10.Add(T10b); VertexData T10c = new VertexData(); T10c.Normal = normals[4]; T10c.TexCoord = textureCoordinates[13]; T10c.Position = allVertices[3]; verticesT10.Add(T10c); Face F10 = new Face(verticesT10); faces.Add(F10); //bottom face //11 IList<VertexData> verticesT11 = new List<VertexData>(); VertexData T11a = new VertexData(); T11a.Normal = normals[5]; T11a.TexCoord = textureCoordinates[10]; T11a.Position = allVertices[7]; verticesT11.Add(T11a); VertexData T11b = new VertexData(); T11b.Normal = normals[5]; T11b.TexCoord = textureCoordinates[9]; T11b.Position = allVertices[6]; verticesT11.Add(T11b); VertexData T11c = new VertexData(); T11c.Normal = normals[5]; T11c.TexCoord = textureCoordinates[14]; T11c.Position = allVertices[4]; verticesT11.Add(T11c); Face F11 = new Face(verticesT11); faces.Add(F11); //12 IList<VertexData> verticesT12 = new List<VertexData>(); VertexData T12a = new VertexData(); T12a.Normal = normals[5]; T12a.TexCoord = textureCoordinates[13]; T12a.Position = allVertices[5]; verticesT12.Add(T12a); VertexData T12b = new VertexData(); T12b.Normal = normals[5]; T12b.TexCoord = textureCoordinates[14]; T12b.Position = allVertices[4]; verticesT12.Add(T12b); VertexData T12c = new VertexData(); T12c.Normal = normals[5]; T12c.TexCoord = textureCoordinates[9]; T12c.Position = allVertices[6]; verticesT12.Add(T12c); Face F12 = new Face(verticesT12); faces.Add(F12); } public void draw() { GL.Begin(BeginMode.Triangles); foreach (Face face in faces) { foreach (VertexData datapoint in face.verticesWithTexCoords) { GL.Normal3(datapoint.Normal); GL.TexCoord2(datapoint.TexCoord); GL.Vertex3(datapoint.Position); } } GL.End(); } } } Gets me this very nice picture: The immediate mode cube renders nicely and taught me a bit on how to use OpenGL, but VBO's are the way to go. Since I read on the OpenTK forums that OpenTK has problems doing VA's or DL's, I decided to skip using those. Now, I've tried to change this cube to a VBO by using the same vertex, normal and tc collections, and making float arrays from them by using the coordinates in combination with uint arrays which contain the index numbers from the immediate cube. (see the private functions at end of the code sample) Somehow this only renders two triangles namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class VBOFaceBasedCube : IMesh { private int VerticesVBOID; private int VerticesVBOStride; private int VertexCount; private int ELementBufferObjectID; private int textureCoordinateVBOID; private int textureCoordinateVBOStride; //private int textureCoordinateArraySize; private int normalVBOID; private int normalVBOStride; public VBOFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: VBO based rendering uint[] vertexElements = { 3,0,1, //01 1,2,3, //02 3,7,0, //03 0,7,4, //04 0,4,1, //05 4,5,1, //06 5,2,1, //07 2,5,6, //08 6,3,2, //09 6,7,5, //10 7,6,4, //11 5,4,6 //12 }; VertexCount = vertexElements.Length; IList<uint> vertexElementList = new List<uint>(vertexElements); uint[] normalElements = { 0,0,0, 0,0,0, 1,1,1, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5 }; IList<uint> normalElementList = new List<uint>(normalElements); uint[] textureIndexArray = { 5,9,10, 10,6,5, 1,0,5, 5,0,4, 2,1,6, 1,5,6, 4,9,5, 9,4,8, 8,13,9, 8,12,13, 10,9,14, 13,14,9 }; //textureCoordinateArraySize = textureIndexArray.Length; IList<uint> textureIndexList = new List<uint>(textureIndexArray); LoadVBO(allVertices, normals, textureCoordinates, vertexElements, normalElementList, textureIndexList); } public void draw() { //bind vertices //bind elements //bind normals //bind texture coordinates GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.NormalArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); GL.VertexPointer(3, VertexPointerType.Float, VerticesVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); GL.NormalPointer(NormalPointerType.Float, normalVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); GL.TexCoordPointer(2, TexCoordPointerType.Float, textureCoordinateVBOStride, 0); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.DrawElements(BeginMode.Polygon, VertexCount, DrawElementsType.UnsignedShort, 0); } //loads a static VBO void LoadVBO(IList<Vector3> vertices, IList<Vector3> normals, IList<Vector2> texcoords, uint[] elements, IList<uint> normalIndices, IList<uint> texCoordIndices) { int size; //todo // To create a VBO: // 1) Generate the buffer handles for the vertex and element buffers. // 2) Bind the vertex buffer handle and upload your vertex data. Check that the buffer was uploaded correctly. // 3) Bind the element buffer handle and upload your element data. Check that the buffer was uploaded correctly. float[] verticesArray = convertVector3fListToFloatArray(vertices); float[] normalsArray = createFloatArrayFromListOfVector3ElementsAndIndices(normals, normalIndices); float[] textureCoordinateArray = createFloatArrayFromListOfVector2ElementsAndIndices(texcoords, texCoordIndices); GL.GenBuffers(1, out VerticesVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); Console.WriteLine("load 1 - vertices"); VerticesVBOStride = BlittableValueType.StrideOf(verticesArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verticesArray.Length * sizeof(float)), verticesArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (verticesArray.Length * BlittableValueType.StrideOf(verticesArray) != size) { throw new ApplicationException("Vertex data not uploaded correctly"); } else { Console.WriteLine("load 1 finished ok"); size = 0; } Console.WriteLine("load 2 - elements"); GL.GenBuffers(1, out ELementBufferObjectID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(elements.Length * sizeof(uint)), elements, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ElementArrayBuffer, BufferParameterName.BufferSize, out size); if (elements.Length * sizeof(uint) != size) { throw new ApplicationException("Element data not uploaded correctly"); } else { size = 0; Console.WriteLine("load 2 finished ok"); } GL.GenBuffers(1, out normalVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); Console.WriteLine("load 3 - normals"); normalVBOStride = BlittableValueType.StrideOf(normalsArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(normalsArray.Length * sizeof(float)), normalsArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); Console.WriteLine("load 3 - pre check"); if (normalsArray.Length * BlittableValueType.StrideOf(normalsArray) != size) { throw new ApplicationException("Normal data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } GL.GenBuffers(1, out textureCoordinateVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); Console.WriteLine("load 4- texture coordinates"); textureCoordinateVBOStride = BlittableValueType.StrideOf(textureCoordinateArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(textureCoordinateArray.Length * textureCoordinateVBOStride), textureCoordinateArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (textureCoordinateArray.Length * BlittableValueType.StrideOf(textureCoordinateArray) != size) { throw new ApplicationException("texture coordinate data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } } //used to convert vertex arrayss for use with VBO's private float[] convertVector3fListToFloatArray(IList<Vector3> input) { int arrayElementCount = input.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector3 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; output[fillCount + 2] = v.Z; fillCount += 3; } return output; } //used for converting texture coordinate arrays for use with VBO's private float[] convertVector2List_to_floatArray(IList<Vector2> input) { int arrayElementCount = input.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector2 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; fillCount += 2; } return output; } //used to create an array of floats from private float[] createFloatArrayFromListOfVector3ElementsAndIndices(IList<Vector3> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; output[fillCount + 2] = inputVectors[i].Z; fillCount += 3; } return output; } private float[] createFloatArrayFromListOfVector2ElementsAndIndices(IList<Vector2> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; fillCount += 2; } return output; } } } This code will only render two triangles and they're nothing like I had in mind: I've done some searching. In some other questions I read that, if I did something wrong, I'd get no rendering at all. Clearly, something gets sent to the GFX card, but it might be that I'm not sending the right data. I've tried altering the sequence in which the triangles are rendered by swapping some of the index numbers in the vert, tc and normal index arrays, but this doesn't seem to be of any effect. I'm slightly lost here. What am I doing wrong here?

    Read the article

  • how to install ffmpeg in cpanel

    - by Ajay Chthri
    i'm using dedicated server(linux) so i need to install ffmpeg in cpanel so here ffmpeg i found in Main Software Install a Perl Module but i writing script in php so how can i install ffmpeg phpperl when i'am trying to install ffmpeg in perl module i get this response Checking C compiler....C compiler (/usr/bin/cc) OK (cached Tue Jan 17 19:16:31 2012)....Done CPAN fallback is disabled since /var/cpanel/conserve_memory exists, and cpanm is available. Method: Using Perl Expect, Installer: cpanm You have make /usr/bin/make Falling back to HTTP::Tiny 0.009 You have /bin/tar: tar (GNU tar) 1.15.1 You have /usr/bin/unzip You have Cpanel::HttpRequest 2.1 Testing connection speed...(using fast method)...Done Ping:2 (ticks) Testing connection speed to cpan.knowledgematters.net using pureperl...(28800.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.develooper.com using pureperl...(22233.33 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.schatt.com using pureperl...(32750.00 bytes/s)...Done Ping:3 (ticks) Testing connection speed to cpan.mirror.facebook.net using pureperl...(14050.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to cpan.mirrors.hoobly.com using pureperl...(5150.00 bytes/s)...Done Five usable mirrors located Ping:0 (ticks) Testing connection speed to 208.109.109.239 using pureperl...(28950.00 bytes/s)...Done Ping:2 (ticks) Testing connection speed to 208.82.118.100 using pureperl...(19300.00 bytes/s)...Done Ping:1 (ticks) Testing connection speed to 69.50.192.73 using pureperl...(19300.00 bytes/s)...Done Three usable fallback mirrors located Mirror Check passed for cpan.schatt.com (/index.html) Searching on cpanmetadb ... Fetching http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release (connected:0).......(request attempt 1/12)...Using dns cache file /root/.HttpRequest/cpanmetadb.cpanel.net......searching for mirrors (mirror search attempt 1/3)......5 usable mirrors located. (less then expected)......mirror search success......connecting to 208.74.123.82...@208.74.123.82......connected......receiving...100%......request success......Done Searching Video::FFmpeg on cpanmetadb (http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release) ... Fetching http://cpanmetadb.cpanel.net/v1.0/package/Video::FFmpeg?cpanel_version=11.30.5.6&cpanel_tier=release (connected:1).......(request attempt 1/12)[email protected]%......request success......Done Source: fastest CPAN mirror ... --> Working on Video::FFmpeg Fetching http://cpan.schatt.com//authors/id/R/RA/RANDOMMAN/Video-FFmpeg-0.47.tar.gz ... Fetching http://cpan.schatt.com/authors/id/R/RA/RANDOMMAN/Video-FFmpeg-0.47.tar.gz (connected:1).......(request attempt 1/12)...Resolving cpan.schatt.com...(resolve attempt 1/65)......connecting to 66.249.128.125...@66.249.128.125......connected......receiving...25%...50%...75%...100%......request success......Done OK Unpacking Video-FFmpeg-0.47.tar.gz Video-FFmpeg-0.47/ Video-FFmpeg-0.47/Changes Video-FFmpeg-0.47/FFmpeg.xs Video-FFmpeg-0.47/MANIFEST Video-FFmpeg-0.47/META.yml Video-FFmpeg-0.47/Makefile.PL Video-FFmpeg-0.47/README Video-FFmpeg-0.47/lib/ Video-FFmpeg-0.47/lib/Video/ Video-FFmpeg-0.47/lib/Video/FFmpeg/ Video-FFmpeg-0.47/lib/Video/FFmpeg/AVFormat.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/ Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Audio.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Subtitle.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream/Video.pm Video-FFmpeg-0.47/lib/Video/FFmpeg/AVStream.pm Video-FFmpeg-0.47/lib/Video/FFmpeg.pm Video-FFmpeg-0.47/ppport.h Video-FFmpeg-0.47/t/ Video-FFmpeg-0.47/t/Video-FFmpeg.t Video-FFmpeg-0.47/test Video-FFmpeg-0.47/test.mp4 Video-FFmpeg-0.47/typemap Entering Video-FFmpeg-0.47 Checking configure dependencies from META.yml META.yml not found or unparsable. Fetching META.yml from search.cpan.org Fetching http://search.cpan.org/meta/Video-FFmpeg-0.47/META.yml (connected:1).......(request attempt 1/12)...Resolving search.cpan.org...(resolve attempt 1/65)......connecting to 199.15.176.161...@199.15.176.161......connected......receiving...100%......request success......Done Configuring Video-FFmpeg-0.47 ... Running Makefile.PL Perl v5.10.0 required--this is only v5.8.8, stopped at Makefile.PL line 1. BEGIN failed--compilation aborted at Makefile.PL line 1. N/A ! Configure failed for Video-FFmpeg-0.47. See /home/.cpanm/build.log for details. Perl Expect failed with non-zero exit status: 256 All available perl module install methods have failed guide me how can i install ffmpeg in cPanel Thanks for advance.

    Read the article

  • How can I forward ALL traffic over a site-to-site VPN on Cisco ASA?

    - by Scott Clements
    Hi There, I currently have two Cisco ASA 5100 routers. They are at different physical sites and are configured with a site-to-site VPN which is active and working. I can communicate with the subnets on either site from the other and both are connected to the internet, however I need to ensure that all the traffic at my remote site goes through this VPN to my site here. I know that the web traffic is doing so as a "tracert" confirms this, but I need to ensure that all other network traffic is being directed over this VPN to my network here. Here is my config for the ASA router at my remote site: hostname ciscoasa domain-name xxxxx enable password 78rl4MkMED8xiJ3g encrypted names ! interface Ethernet0/0 nameif NIACEDC security-level 100 ip address x.x.x.x 255.255.255.0 ! interface Ethernet0/1 description External Janet Connection nameif JANET security-level 0 ip address x.x.x.x 255.255.255.248 ! interface Ethernet0/2 shutdown no nameif security-level 100 no ip address ! interface Ethernet0/3 shutdown no nameif security-level 100 ip address dhcp setroute ! interface Management0/0 nameif management security-level 100 ip address 192.168.100.1 255.255.255.0 management-only ! passwd 2KFQnbNIdI.2KYOU encrypted ftp mode passive clock timezone GMT/BST 0 clock summer-time GMT/BDT recurring last Sun Mar 1:00 last Sun Oct 2:00 dns domain-lookup NIACEDC dns server-group DefaultDNS name-server 154.32.105.18 name-server 154.32.107.18 domain-name XXXX same-security-traffic permit inter-interface same-security-traffic permit intra-interface access-list ren_access_in extended permit ip any any access-list ren_access_in extended permit tcp any any access-list ren_nat0_outbound extended permit ip 192.168.6.0 255.255.255.0 192.168.3.0 255.255.255.0 access-list NIACEDC_nat0_outbound extended permit ip 192.168.12.0 255.255.255.0 192.168.3.0 255.255.255.0 access-list JANET_20_cryptomap extended permit ip 192.168.12.0 255.255.255.0 192.168.3.0 255.255.255.0 access-list NIACEDC_access_in extended permit ip any any access-list NIACEDC_access_in extended permit tcp any any access-list JANET_access_out extended permit ip any any access-list NIACEDC_access_out extended permit ip any any pager lines 24 logging enable logging asdm informational mtu NIACEDC 1500 mtu JANET 1500 mtu management 1500 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-522.bin no asdm history enable arp timeout 14400 nat-control global (NIACEDC) 1 interface global (JANET) 1 interface nat (NIACEDC) 0 access-list NIACEDC_nat0_outbound nat (NIACEDC) 1 192.168.12.0 255.255.255.0 access-group NIACEDC_access_in in interface NIACEDC access-group NIACEDC_access_out out interface NIACEDC access-group JANET_access_out out interface JANET route JANET 0.0.0.0 0.0.0.0 194.82.121.82 1 route JANET 0.0.0.0 0.0.0.0 192.168.3.248 tunneled timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout uauth 0:05:00 absolute http server enable http 192.168.12.0 255.255.255.0 NIACEDC http 192.168.100.0 255.255.255.0 management http 192.168.9.0 255.255.255.0 NIACEDC no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec transform-set ESP-AES-256-SHA esp-aes-256 esp-sha-hmac crypto map JANET_map 20 match address JANET_20_cryptomap crypto map JANET_map 20 set pfs crypto map JANET_map 20 set peer X.X.X.X crypto map JANET_map 20 set transform-set ESP-AES-256-SHA crypto map JANET_map interface JANET crypto isakmp enable JANET crypto isakmp policy 10 authentication pre-share encryption aes-256 hash sha group 2 lifetime 86400 crypto isakmp policy 30 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 crypto isakmp policy 50 authentication pre-share encryption aes-256 hash sha group 5 lifetime 86400 tunnel-group X.X.X.X type ipsec-l2l tunnel-group X.X.X.X ipsec-attributes pre-shared-key * telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd address 192.168.100.2-192.168.100.254 management dhcpd enable management ! ! class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum 512 policy-map global_policy class inspection_default inspect dns preset_dns_map inspect ftp inspect h323 h225 inspect h323 ras inspect rsh inspect rtsp inspect esmtp inspect sqlnet inspect skinny inspect sunrpc inspect xdmcp inspect sip inspect netbios inspect tftp inspect http ! service-policy global_policy global prompt hostname context no asdm history enable Thanks in advance, Scott

    Read the article

  • Command-line video editing in Linux (cut, join and preview)

    - by sdaau
    I have rather simple editing needs - I need to cut up some videos, maybe insert some PNGs in between them, and join these videos (don't need transitions, effects, etc.). Basically, pitivi would do what I want - except, I use 640x480 30 fps AVI's from a camera, and as soon as I put in over a couple of minutes of that kind of material, pitivi starts freezing on preview, and thus becomes unusable. So, I started looking for a command line tool for Linux; I guess only ffmpeg (command line - Using ffmpeg to cut up video - Super User) and mplayer (Sam - Edit video file with mencoder under linux) are so far candidates, but I cannot find examples of the use I have in mind.   Basically, I'd imagine there's an encoder and player tools (like ffmpeg vs ffplay; or mencoder vs mplayer) - such that, to begin with, the edit sequence could be specified directly on the command line, preferably with frame resolution - a pseudocode would look like: videnctool -compose --file=vid1.avi --start=00:00:30:12 --end=00:01:45:00 --file=vid2.avi --start=00:05:00:00 --end=00:07:12:25 --file=mypicture.png --duration=00:00:02:00 --file=vid3.avi --start=00:02:00:00 --end=00:02:45:10 --output=editedvid.avi ... or, it could have a "playlist" text file, like: vid1.avi 00:00:30:12 00:01:45:00 vid2.avi 00:05:00:00 00:07:12:25 mypicture.png - 00:00:02:00 vid3.avi 00:02:00:00 00:02:45:10 ... so it could be called with videnctool -compose --playlist=playlist.txt --output=editedvid.avi The idea here would be that all of the videos are in the same format - allowing the tool to avoid transcoding, and just do a "raw copy" instead (as in mencoder's copy codec: "-oac copy -ovc copy") - or in lack of that, uncompressed audio/video would be OK (although it would eat a bit of space). In the case of the still image, the tool would use the encoding set by the video files.   The thing is, I can so far see that mencoder and ffmpeg can operate on individual files; e.g. cut a single section from a single file, or join files (mencoder also has Edit Decision Lists (EDL), which can be used to do frame-exact cutting - so you can define multiple cut regions, but it's again attributed to a single file). Which implies I have to work on cutting pieces first from individual files first (each of which would demand own temporary file on disk), and then joining them in a final video file. I would then imagine, that there is a corresponding player tool, which can read the same command line option format / playlist file as the encoding tool - except it will not generate an output file, but instead play the video; e.g. in pseudocode: vidplaytool --playlist=playlist.txt --start=00:01:14 --end=00:03:13 ... and, given there's enough memory, it would generate a low-res video preview in RAM, and play it back in a window, while offering some limited interaction ( like mplayer's keyboard shortcuts for play, pause, rewind, step frame). Of course, I'd imagine the start and end times to refer to the entire playlist, and include any file that may end up in that region in the playlist. Thus, the end result of all this would be: command line operation; no temporary files while doing the editing - and also no temporary files (nor transcoding) when rendering final output... which I myself think would be nice. So, while I think that all of the above may be a bit of a stretch - does there exist anything that would approximate the workflow described above?

    Read the article

  • SSH Public Key Authentication only works if active session exists before

    - by Webx10
    I have a rather strange problem with my SSH configuration. I set up my server with the help of a Remote Access Card and configured everything with a KVM viewer. So while being logged into the server via the KVM Viewer I configured SSH with only pubkey and tried to login from my local laptop. It worked fine. If I quit the KVM Session (or logout with the user in the KVM session) I cannot login via ssh anymore (pubkey denied). SSH login only works as long as the user is somewhere still logged in. Any hints what the problem might be? Console output for a failed login (all personal data exchanged): OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011 debug1: Reading configuration data /Users/mylocaluser/.ssh/config debug1: Reading configuration data /etc/ssh_config debug1: /etc/ssh_config line 20: Applying options for * debug1: /etc/ssh_config line 103: Applying options for * debug1: Connecting to 100.100.100.100 [100.100.100.100] port 12345. debug1: Connection established. debug1: identity file /Users/mylocaluser/.ssh/id_rsa type 1 debug1: identity file /Users/mylocaluser/.ssh/id_rsa-cert type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa-cert type -1 debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_6.2 debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 pat OpenSSH* debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug1: kex: server->client aes128-ctr [email protected] none debug1: kex: client->server aes128-ctr [email protected] none debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP debug1: SSH2_MSG_KEX_DH_GEX_INIT sent debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY debug1: Server host key: RSA ab:12:23:34:45:56:67:78:89:90:12:23:34:45:56:67 debug1: Host '[100.100.100.100]:12345' is known and matches the RSA host key. debug1: Found key in /Users/mylocaluser/.ssh/known_hosts:36 debug1: ssh_rsa_verify: signature correct debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: Roaming not allowed by server debug1: SSH2_MSG_SERVICE_REQUEST sent debug1: SSH2_MSG_SERVICE_ACCEPT received debug1: Authentications that can continue: publickey debug1: Next authentication method: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa debug1: Authentications that can continue: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa2 debug1: Authentications that can continue: publickey debug1: Trying private key: /Users/mylocaluser/.ssh/id_dsa debug1: No more authentication methods to try. Permission denied (publickey). Console output for a successfull login (only possible while "active session" exists): OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011 debug1: Reading configuration data /Users/mylocaluser/.ssh/config debug1: Reading configuration data /etc/ssh_config debug1: /etc/ssh_config line 20: Applying options for * debug1: /etc/ssh_config line 103: Applying options for * debug1: Connecting to 100.100.100.100 [100.100.100.100] port 12345. debug1: Connection established. debug1: identity file /Users/mylocaluser/.ssh/id_rsa type 1 debug1: identity file /Users/mylocaluser/.ssh/id_rsa-cert type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa-cert type -1 debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_6.2 debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 pat OpenSSH* debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug1: kex: server->client aes128-ctr [email protected] none debug1: kex: client->server aes128-ctr [email protected] none debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP debug1: SSH2_MSG_KEX_DH_GEX_INIT sent debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY debug1: Server host key: RSA ab:12:23:34:45:56:67:78:89:90:12:23:34:45:56:67 debug1: Host '[100.100.100.100]:12345' is known and matches the RSA host key. debug1: Found key in /Users/mylocaluser/.ssh/known_hosts:36 debug1: ssh_rsa_verify: signature correct debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: Roaming not allowed by server debug1: SSH2_MSG_SERVICE_REQUEST sent debug1: SSH2_MSG_SERVICE_ACCEPT received debug1: Authentications that can continue: publickey debug1: Next authentication method: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa debug1: Server accepts key: pkalg ssh-rsa blen 279 debug1: Authentication succeeded (publickey). Authenticated to 100.100.100.100 ([100.100.100.100]:12345). debug1: channel 0: new [client-session] debug1: Requesting [email protected] debug1: Entering interactive session. debug1: Sending environment. debug1: Sending env LANG = de_DE.UTF-8 Welcome to Ubuntu 14.04.1 LTS

    Read the article

  • Installing EclipseFP on Mac OS X

    - by Dom Kennedy
    I am trying to install EclipseFP. I'm running OS X Mavericks. I've tried following both the official installation instructions and the advice in this answer on SU, but I'm still having the same problem. I can get the plugin itself installed painlessly using Help -> Install New Software..., Bbut when I restart and switch to the Haskell perspective, things start to go wrong. The installation instructions tells me that I should receive a prompt to install BuildWrapper and Scion Browser. I do not receive this prompt. Furthermore, if I create a new Haskell project, my code has no syntax highlighting, and the Hoogle search feature does not appear to do anything. It's clear that the plugin is not set up correctly yet. I've tried running cabal update in Terminal, but this does not change anything. After several attempts going round in circles with this on Eclipse Juno, I uninstalled Eclispe and the Haskell Platform and performed a clean install of Eclipse Luna and the latest Haskell Platform. However, the problems are persisting. I've tried going into Preferences to see if I could sort any of this out manually. I should initially point out that my GHC installation seems to be correctly references under Preferences -> Haskell Implementations Under Haskell -> Helper executables, there are areas for configuring the options of both BuildWrapper and Scion Browser. At present, both are blank. I tried clicking the Install from Hackage... button beside each of them with no success; I receive an error message saying Expected executable <workspace>/.metadata/.plugins/net.sf.eclipsefp.haskell.ui/sandbox/.cabal-sandbox/bin/buildwrapper not found!` (replace buildwrapper for scion-browser and the message is the same) The Eclipse console displays the following exception after doing the above with BuildWrapper: src/Language/Haskell/BuildWrapper/GHCStorage.hs:313:32: Not in scope: data constructor ‘MatchGroup’ cabal.real: Error: some packages failed to install: buildwrapper-0.7.4 failed during the building phase. The exception was: ExitFailure 1 and after doing it for Scion-Browser: zip-archive-0.2.3.4 (reinstall) changes: text-1.1.0.0 -> 0.11.3.1 pandoc-1.12.3.3 (latest: 1.13) -http-conduit (new version) Graphalyze-0.14.1.0 (reinstall) changes: pandoc-1.12.4.2 -> 1.12.3.3, text-1.1.0.0 -> 0.11.3.1 cabal.real: The following packages are likely to be broken by the reinstalls: pandoc-1.12.4.2 unordered-containers-0.2.4.0 aeson-0.7.0.4 scientific-0.2.0.2 case-insensitive-1.1.0.3 HTTP-4000.2.10 Use --force-reinstalls if you want to install anyway. After receiving similar results as the above on previous attempts, I've tried using force-reinstalls and ended up at more dead ends. I am at a loss as to what is wrong and how to solve this. I should point out that my GHC installation appears to be correctly configured under Preferences -> Haskell -> Haskell Implementations. Apologies if any of this information is irrelevant, I'm just not really sure what is important and what isn't at this point. Any help anyone could provide me with would be greatly appreciated.

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

  • Windows Phone 7: Building a simple dictionary web client

    - by TechTwaddle
    Like I mentioned in this post a while back, I came across a dictionary web service called Aonaware that serves up word definitions from various dictionaries and is really easy to use. The services page on their website, http://services.aonaware.com/DictService/DictService.asmx, lists all the operations that are supported by the dictionary service. Here they are, Word Dictionary Web Service The following operations are supported. For a formal definition, please review the Service Description. Define Define given word, returning definitions from all dictionaries DefineInDict Define given word, returning definitions from specified dictionary DictionaryInfo Show information about the specified dictionary DictionaryList Returns a list of available dictionaries DictionaryListExtended Returns a list of advanced dictionaries (e.g. translating dictionaries) Match Look for matching words in all dictionaries using the given strategy MatchInDict Look for matching words in the specified dictionary using the given strategy ServerInfo Show remote server information StrategyList Return list of all available strategies on the server Follow the links above to get more information on each API. In this post we will be building a simple windows phone 7 client which uses this service to get word definitions for words entered by the user. The application will also allow the user to select a dictionary from all the available ones and look up the word definition in that dictionary. So of all the apis above we will be using only two, DictionaryList() to get a list of all supported dictionaries and DefineInDict() to get the word definition from a particular dictionary. Before we get started, a note to you all; I would have liked to implement this application using concepts from data binding, item templates, data templates etc. I have a basic understanding of what they are but, being a beginner, I am not very comfortable with those topics yet so I didn’t use them. I thought I’ll get this version out of the way and maybe in the next version I could give those a try. A somewhat scary mock-up of the what the final application will look like, Select Dictionary is a list picker control from the silverlight toolkit (you need to download and install the toolkit if you haven’t already). Below it is a textbox where the user can enter words to look up and a button beside it to fetch the word definition when clicked. Finally we have a textblock which occupies the remaining area and displays the word definition from the selected dictionary. Create a silverlight application for windows phone 7, AonawareDictionaryClient, and add references to the silverlight toolkit and the web service. From the solution explorer right on References and select Microsoft.Phone.Controls.Toolkit from under the .NET tab, Next, add a reference to the web service. Again right click on References and this time select Add Service Reference In the resulting dialog paste the service url in the Address field and press go, (url –> http://services.aonaware.com/DictService/DictService.asmx) once the service is discovered, provide a name for the NameSpace, in this case I’ve called it AonawareDictionaryService. Press OK. You can now use the classes and functions that are generated in the AonawareDictionaryClient.AonawareDictionaryService namespace. Let’s get the UI done now. In MainPage.xaml add a namespace declaration to use the toolkit controls, xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Toolkit" the content of LayoutRoot is changed as follows, (sorry, no syntax highlighting in this post) <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,5,0,5">     <TextBlock x:Name="ApplicationTitle" Text="AONAWARE DICTIONARY CLIENT" Style="{StaticResource PhoneTextNormalStyle}"/>     <!--<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>--> </StackPanel> <!--ContentPanel - place additional content here--> <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">     <Grid.RowDefinitions>         <RowDefinition Height="Auto"/>         <RowDefinition Height="Auto"/>         <RowDefinition Height="*"/>     </Grid.RowDefinitions>     <toolkit:ListPicker Grid.Column="1" x:Name="listPickerDictionaryList"                         Header="Select Dictionary :">     </toolkit:ListPicker>     <Grid Grid.Row="1" Margin="0,5,0,0">         <Grid.ColumnDefinitions>             <ColumnDefinition Width="*"/>             <ColumnDefinition Width="Auto" />         </Grid.ColumnDefinitions>         <TextBox x:Name="txtboxInputWord" Grid.Column="0" GotFocus="OnTextboxInputWordGotFocus" />         <Button x:Name="btnGo" Grid.Column="1" Click="OnButtonGoClick" >             <Button.Content>                 <Image Source="/images/button-go.png"/>             </Button.Content>         </Button>     </Grid>     <ScrollViewer Grid.Row="2" x:Name="scrollViewer">         <TextBlock  Margin="12,5,12,5"  x:Name="txtBlockWordMeaning" HorizontalAlignment="Stretch"                    VerticalAlignment="Stretch" TextWrapping="Wrap"                    FontSize="26" />     </ScrollViewer> </Grid> I have commented out the PageTitle as it occupies too much valuable space, and the ContentPanel is changed to contain three rows. First row contains the list picker control, second row contains the textbox and the button, and the third row contains a textblock within a scroll viewer. The designer will now be showing the final ui, Now go to MainPage.xaml.cs, and add the following namespace declarations, using Microsoft.Phone.Controls; using AonawareDictionaryClient.AonawareDictionaryService; using System.IO.IsolatedStorage; A class called DictServiceSoapClient would have been created for you in the background when you added a reference to the web service. This class functions as a wrapper to the services exported by the web service. All the web service functions that we saw at the start can be access through this class, or more precisely through an object of this class. Create a data member of type DictServiceSoapClient in the Mainpage class, and a function which initializes it, DictServiceSoapClient DictSvcClient = null; private DictServiceSoapClient GetDictServiceSoapClient() {     if (null == DictSvcClient)     {         DictSvcClient = new DictServiceSoapClient();     }     return DictSvcClient; } We have two major tasks remaining. First, when the application loads we need to populate the list picker with all the supported dictionaries and second, when the user enters a word and clicks on the arrow button we need to fetch the word’s meaning. Populating the List Picker In the OnNavigatingTo event of the MainPage, we call the DictionaryList() api. This can also be done in the OnLoading event handler of the MainPage; not sure if one has an advantage over the other. Here’s the code for OnNavigatedTo, protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) {     DictServiceSoapClient client = GetDictServiceSoapClient();     client.DictionaryListCompleted += new EventHandler<DictionaryListCompletedEventArgs>(OnGetDictionaryListCompleted);     client.DictionaryListAsync();     base.OnNavigatedTo(e); } Windows Phone 7 supports only async calls to web services. When we added a reference to the dictionary service, asynchronous versions of all the functions were generated automatically. So in the above function we register a handler to the DictionaryListCompleted event which will occur when the call to DictionaryList() gets a response from the server. Then we call the DictionaryListAsynch() function which is the async version of the DictionaryList() api. The result of this api will be sent to the handler OnGetDictionaryListCompleted(), void OnGetDictionaryListCompleted(object sender, DictionaryListCompletedEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     Dictionary[] listOfDictionaries;     if (e.Error == null)     {         listOfDictionaries = e.Result;         PopulateListPicker(listOfDictionaries, settings);     }     else if (settings.Contains("SavedDictionaryList"))     {         listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         PopulateListPicker(listOfDictionaries, settings);     }     else     {         MessageBoxResult res = MessageBox.Show("An error occured while retrieving dictionary list, do you want to try again?", "Error", MessageBoxButton.OKCancel);         if (MessageBoxResult.OK == res)         {             GetDictServiceSoapClient().DictionaryListAsync();         }     }     settings.Save(); } I have used IsolatedStorageSettings to store a few things; the entire dictionary list and the dictionary that is selected when the user exits the application, so that the next time when the user starts the application the current dictionary is set to the last selected value. First we check if the api returned any error, if the error object is null e.Result will contain the list (actually array) of Dictionary type objects. If there was an error, we check the isolated storage settings to see if there is a dictionary list stored from a previous instance of the application and if so, we populate the list picker based on this saved list. Note that in this case there are chances that the dictionary list might be out of date if there have been changes on the server. Finally, if none of these cases are true, we display an error message to the user and try to fetch the list again. PopulateListPicker() is passed the array of Dictionary objects and the settings object as well, void PopulateListPicker(Dictionary[] listOfDictionaries, IsolatedStorageSettings settings) {     listPickerDictionaryList.Items.Clear();     foreach (Dictionary dictionary in listOfDictionaries)     {         listPickerDictionaryList.Items.Add(dictionary.Name);     }     settings["SavedDictionaryList"] = listOfDictionaries;     string savedDictionaryName;     if (settings.Contains("SavedDictionary"))     {         savedDictionaryName = settings["SavedDictionary"] as string;     }     else     {         savedDictionaryName = "WordNet (r) 2.0"; //default dictionary, wordnet     }     foreach (string dictName in listPickerDictionaryList.Items)     {         if (dictName == savedDictionaryName)         {             listPickerDictionaryList.SelectedItem = dictName;             break;         }     }     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string; } We first clear all the items from the list picker, add the dictionary names from the array and then create a key in the settings called SavedDictionaryList and store the dictionary list in it. We then check if there is saved dictionary available from a previous instance, if there is, we set it as the selected item in the list picker. And if not, we set “WordNet ® 2.0” as the default dictionary. Before returning, we save the selected dictionary in the “SavedDictionary” key of the isolated storage settings. Fetching word definitions Getting this part done is very similar to the above code. We get the input word from the textbox, call into DefineInDictAsync() to fetch the definition and when DefineInDictAsync completes, we get the result and display it in the textblock. Here is the handler for the button click, private void OnButtonGoClick(object sender, RoutedEventArgs e) {     txtBlockWordMeaning.Text = "Please wait..";     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     if (txtboxInputWord.Text.Trim().Length <= 0)     {         MessageBox.Show("Please enter a word in the textbox and press 'Go'");     }     else     {         Dictionary[] listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         string selectedDictionary = listPickerDictionaryList.SelectedItem.ToString();         string dictId = "wn"; //default dictionary is wordnet (wn is the dict id)         foreach (Dictionary dict in listOfDictionaries)         {             if (dict.Name == selectedDictionary)             {                 dictId = dict.Id;                 break;             }         }         DictServiceSoapClient client = GetDictServiceSoapClient();         client.DefineInDictCompleted += new EventHandler<DefineInDictCompletedEventArgs>(OnDefineInDictCompleted);         client.DefineInDictAsync(dictId, txtboxInputWord.Text.Trim());     } } We validate the input and then select the dictionary id based on the currently selected dictionary. We need the dictionary id because the api DefineInDict() expects the dictionary identifier and not the dictionary name. We could very well have stored the dictionary id in isolated storage settings too. Again, same as before, we register a event handler for the DefineInDictCompleted event and call the DefineInDictAsync() method passing in the dictionary id and the input word. void OnDefineInDictCompleted(object sender, DefineInDictCompletedEventArgs e) {     WordDefinition wd = e.Result;     scrollViewer.ScrollToVerticalOffset(0.0f);     if (wd.Definitions.Length == 0)     {         txtBlockWordMeaning.Text = String.Format("No definitions were found for '{0}' in '{1}'", txtboxInputWord.Text.Trim(), listPickerDictionaryList.SelectedItem.ToString().Trim());     }     else     {         foreach (Definition def in wd.Definitions)         {             string str = def.WordDefinition;             str = str.Replace("  ", " "); //some formatting             txtBlockWordMeaning.Text = str;         }     } } When the api completes, e.Result will contain a WordDefnition object. This class is also generated in the background while adding the service reference. We check the word definitions within this class to see if any results were returned, if not, we display a message to the user in the textblock. If a definition was found the text on the textblock is set to display the definition of the word. Adding final touches, we now need to save the current dictionary when the application exits. A small but useful thing is selecting the entire word in the input textbox when the user selects it. This makes sure that if the user has looked up a definition for a really long word, he doesn’t have to press ‘clear’ too many times to enter the next word, protected override void OnNavigatingFrom(System.Windows.Navigation.NavigatingCancelEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string;     settings.Save();     base.OnNavigatingFrom(e); } private void OnTextboxInputWordGotFocus(object sender, RoutedEventArgs e) {     TextBox txtbox = sender as TextBox;     if (txtbox.Text.Trim().Length > 0)     {         txtbox.SelectionStart = 0;         txtbox.SelectionLength = txtbox.Text.Length;     } } OnNavigatingFrom() is called whenever you navigate away from the MainPage, since our application contains only one page that would mean that it is exiting. I leave you with a short video of the application in action, but before that if you have any suggestions on how to make the code better and improve it please do leave a comment. Until next time…

    Read the article

  • C#/.NET Little Wonders: ConcurrentBag and BlockingCollection

    - by James Michael Hare
    In the first week of concurrent collections, began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  The last post discussed the ConcurrentDictionary<T> .  Finally this week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see C#/.NET Little Wonders: A Redux. Recap As you'll recall from the previous posts, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  With .NET 4.0, a new breed of collections was born in the System.Collections.Concurrent namespace.  Of these, the final concurrent collection we will examine is the ConcurrentBag and a very useful wrapper class called the BlockingCollection. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this informative whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentBag<T> – Thread-safe unordered collection. Unlike the other concurrent collections, the ConcurrentBag<T> has no non-concurrent counterpart in the .NET collections libraries.  Items can be added and removed from a bag just like any other collection, but unlike the other collections, the items are not maintained in any order.  This makes the bag handy for those cases when all you care about is that the data be consumed eventually, without regard for order of consumption or even fairness – that is, it’s possible new items could be consumed before older items given the right circumstances for a period of time. So why would you ever want a container that can be unfair?  Well, to look at it another way, you can use a ConcurrentQueue and get the fairness, but it comes at a cost in that the ordering rules and synchronization required to maintain that ordering can affect scalability a bit.  Thus sometimes the bag is great when you want the fastest way to get the next item to process, and don’t care what item it is or how long its been waiting. The way that the ConcurrentBag works is to take advantage of the new ThreadLocal<T> type (new in System.Threading for .NET 4.0) so that each thread using the bag has a list local to just that thread.  This means that adding or removing to a thread-local list requires very low synchronization.  The problem comes in where a thread goes to consume an item but it’s local list is empty.  In this case the bag performs “work-stealing” where it will rob an item from another thread that has items in its list.  This requires a higher level of synchronization which adds a bit of overhead to the take operation. So, as you can imagine, this makes the ConcurrentBag good for situations where each thread both produces and consumes items from the bag, but it would be less-than-idea in situations where some threads are dedicated producers and the other threads are dedicated consumers because the work-stealing synchronization would outweigh the thread-local optimization for a thread taking its own items. Like the other concurrent collections, there are some curiosities to keep in mind: IsEmpty(), Count, ToArray(), and GetEnumerator() lock collection Each of these needs to take a snapshot of whole bag to determine if empty, thus they tend to be more expensive and cause Add() and Take() operations to block. ToArray() and GetEnumerator() are static snapshots Because it is based on a snapshot, will not show subsequent updates after snapshot. Add() is lightweight Since adding to the thread-local list, there is very little overhead on Add. TryTake() is lightweight if items in thread-local list As long as items are in the thread-local list, TryTake() is very lightweight, much more so than ConcurrentStack() and ConcurrentQueue(), however if the local thread list is empty, it must steal work from another thread, which is more expensive. Remember, a bag is not ideal for all situations, it is mainly ideal for situations where a process consumes an item and either decomposes it into more items to be processed, or handles the item partially and places it back to be processed again until some point when it will complete.  The main point is that the bag works best when each thread both takes and adds items. For example, we could create a totally contrived example where perhaps we want to see the largest power of a number before it crosses a certain threshold.  Yes, obviously we could easily do this with a log function, but bare with me while I use this contrived example for simplicity. So let’s say we have a work function that will take a Tuple out of a bag, this Tuple will contain two ints.  The first int is the original number, and the second int is the last multiple of that number.  So we could load our bag with the initial values (let’s say we want to know the last multiple of each of 2, 3, 5, and 7 under 100. 1: var bag = new ConcurrentBag<Tuple<int, int>> 2: { 3: Tuple.Create(2, 1), 4: Tuple.Create(3, 1), 5: Tuple.Create(5, 1), 6: Tuple.Create(7, 1) 7: }; Then we can create a method that given the bag, will take out an item, apply the multiplier again, 1: public static void FindHighestPowerUnder(ConcurrentBag<Tuple<int,int>> bag, int threshold) 2: { 3: Tuple<int,int> pair; 4:  5: // while there are items to take, this will prefer local first, then steal if no local 6: while (bag.TryTake(out pair)) 7: { 8: // look at next power 9: var result = Math.Pow(pair.Item1, pair.Item2 + 1); 10:  11: if (result < threshold) 12: { 13: // if smaller than threshold bump power by 1 14: bag.Add(Tuple.Create(pair.Item1, pair.Item2 + 1)); 15: } 16: else 17: { 18: // otherwise, we're done 19: Console.WriteLine("Highest power of {0} under {3} is {0}^{1} = {2}.", 20: pair.Item1, pair.Item2, Math.Pow(pair.Item1, pair.Item2), threshold); 21: } 22: } 23: } Now that we have this, we can load up this method as an Action into our Tasks and run it: 1: // create array of tasks, start all, wait for all 2: var tasks = new[] 3: { 4: new Task(() => FindHighestPowerUnder(bag, 100)), 5: new Task(() => FindHighestPowerUnder(bag, 100)), 6: }; 7:  8: Array.ForEach(tasks, t => t.Start()); 9:  10: Task.WaitAll(tasks); Totally contrived, I know, but keep in mind the main point!  When you have a thread or task that operates on an item, and then puts it back for further consumption – or decomposes an item into further sub-items to be processed – you should consider a ConcurrentBag as the thread-local lists will allow for quick processing.  However, if you need ordering or if your processes are dedicated producers or consumers, this collection is not ideal.  As with anything, you should performance test as your mileage will vary depending on your situation! BlockingCollection<T> – A producers & consumers pattern collection The BlockingCollection<T> can be treated like a collection in its own right, but in reality it adds a producers and consumers paradigm to any collection that implements the interface IProducerConsumerCollection<T>.  If you don’t specify one at the time of construction, it will use a ConcurrentQueue<T> as its underlying store. If you don’t want to use the ConcurrentQueue, the ConcurrentStack and ConcurrentBag also implement the interface (though ConcurrentDictionary does not).  In addition, you are of course free to create your own implementation of the interface. So, for those who don’t remember the producers and consumers classical computer-science problem, the gist of it is that you have one (or more) processes that are creating items (producers) and one (or more) processes that are consuming these items (consumers).  Now, the crux of the problem is that there is a bin (queue) where the produced items are placed, and typically that bin has a limited size.  Thus if a producer creates an item, but there is no space to store it, it must wait until an item is consumed.  Also if a consumer goes to consume an item and none exists, it must wait until an item is produced. The BlockingCollection makes it trivial to implement any standard producers/consumers process set by providing that “bin” where the items can be produced into and consumed from with the appropriate blocking operations.  In addition, you can specify whether the bin should have a limited size or can be (theoretically) unbounded, and you can specify timeouts on the blocking operations. As far as your choice of “bin”, for the most part the ConcurrentQueue is the right choice because it is fairly light and maximizes fairness by ordering items so that they are consumed in the same order they are produced.  You can use the concurrent bag or stack, of course, but your ordering would be random-ish in the case of the former and LIFO in the case of the latter. So let’s look at some of the methods of note in BlockingCollection: BoundedCapacity returns capacity of the “bin” If the bin is unbounded, the capacity is int.MaxValue. Count returns an internally-kept count of items This makes it O(1), but if you modify underlying collection directly (not recommended) it is unreliable. CompleteAdding() is used to cut off further adds. This sets IsAddingCompleted and begins to wind down consumers once empty. IsAddingCompleted is true when producers are “done”. Once you are done producing, should complete the add process to alert consumers. IsCompleted is true when producers are “done” and “bin” is empty. Once you mark the producers done, and all items removed, this will be true. Add() is a blocking add to collection. If bin is full, will wait till space frees up Take() is a blocking remove from collection. If bin is empty, will wait until item is produced or adding is completed. GetConsumingEnumerable() is used to iterate and consume items. Unlike the standard enumerator, this one consumes the items instead of iteration. TryAdd() attempts add but does not block completely If adding would block, returns false instead, can specify TimeSpan to wait before stopping. TryTake() attempts to take but does not block completely Like TryAdd(), if taking would block, returns false instead, can specify TimeSpan to wait. Note the use of CompleteAdding() to signal the BlockingCollection that nothing else should be added.  This means that any attempts to TryAdd() or Add() after marked completed will throw an InvalidOperationException.  In addition, once adding is complete you can still continue to TryTake() and Take() until the bin is empty, and then Take() will throw the InvalidOperationException and TryTake() will return false. So let’s create a simple program to try this out.  Let’s say that you have one process that will be producing items, but a slower consumer process that handles them.  This gives us a chance to peek inside what happens when the bin is bounded (by default, the bin is NOT bounded). 1: var bin = new BlockingCollection<int>(5); Now, we create a method to produce items: 1: public static void ProduceItems(BlockingCollection<int> bin, int numToProduce) 2: { 3: for (int i = 0; i < numToProduce; i++) 4: { 5: // try for 10 ms to add an item 6: while (!bin.TryAdd(i, TimeSpan.FromMilliseconds(10))) 7: { 8: Console.WriteLine("Bin is full, retrying..."); 9: } 10: } 11:  12: // once done producing, call CompleteAdding() 13: Console.WriteLine("Adding is completed."); 14: bin.CompleteAdding(); 15: } And one to consume them: 1: public static void ConsumeItems(BlockingCollection<int> bin) 2: { 3: // This will only be true if CompleteAdding() was called AND the bin is empty. 4: while (!bin.IsCompleted) 5: { 6: int item; 7:  8: if (!bin.TryTake(out item, TimeSpan.FromMilliseconds(10))) 9: { 10: Console.WriteLine("Bin is empty, retrying..."); 11: } 12: else 13: { 14: Console.WriteLine("Consuming item {0}.", item); 15: Thread.Sleep(TimeSpan.FromMilliseconds(20)); 16: } 17: } 18: } Then we can fire them off: 1: // create one producer and two consumers 2: var tasks = new[] 3: { 4: new Task(() => ProduceItems(bin, 20)), 5: new Task(() => ConsumeItems(bin)), 6: new Task(() => ConsumeItems(bin)), 7: }; 8:  9: Array.ForEach(tasks, t => t.Start()); 10:  11: Task.WaitAll(tasks); Notice that the producer is faster than the consumer, thus it should be hitting a full bin often and displaying the message after it times out on TryAdd(). 1: Consuming item 0. 2: Consuming item 1. 3: Bin is full, retrying... 4: Bin is full, retrying... 5: Consuming item 3. 6: Consuming item 2. 7: Bin is full, retrying... 8: Consuming item 4. 9: Consuming item 5. 10: Bin is full, retrying... 11: Consuming item 6. 12: Consuming item 7. 13: Bin is full, retrying... 14: Consuming item 8. 15: Consuming item 9. 16: Bin is full, retrying... 17: Consuming item 10. 18: Consuming item 11. 19: Bin is full, retrying... 20: Consuming item 12. 21: Consuming item 13. 22: Bin is full, retrying... 23: Bin is full, retrying... 24: Consuming item 14. 25: Adding is completed. 26: Consuming item 15. 27: Consuming item 16. 28: Consuming item 17. 29: Consuming item 19. 30: Consuming item 18. Also notice that once CompleteAdding() is called and the bin is empty, the IsCompleted property returns true, and the consumers will exit. Summary The ConcurrentBag is an interesting collection that can be used to optimize concurrency scenarios where tasks or threads both produce and consume items.  In this way, it will choose to consume its own work if available, and then steal if not.  However, in situations where you want fair consumption or ordering, or in situations where the producers and consumers are distinct processes, the bag is not optimal. The BlockingCollection is a great wrapper around all of the concurrent queue, stack, and bag that allows you to add producer and consumer semantics easily including waiting when the bin is full or empty. That’s the end of my dive into the concurrent collections.  I’d also strongly recommend, once again, you read this excellent Microsoft white paper that goes into much greater detail on the efficiencies you can gain using these collections judiciously (here). Tweet Technorati Tags: C#,.NET,Concurrent Collections,Little Wonders

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • I can''t figure out how to use the comboBox to remove radiobuttons

    - by user3576336
    import java.awt.EventQueue; import javax.swing.JFrame; import javax.swing.JPanel; import javax.swing.border.EmptyBorder; import javax.swing.ButtonGroup; import javax.swing.JLabel; import javax.swing.JDesktopPane; import javax.swing.JRadioButton; import javax.swing.JComboBox; import java.awt.GridBagLayout; import java.awt.GridBagConstraints; import java.awt.Insets; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; @SuppressWarnings("serial") public class Calendar1 extends JFrame implements ActionListener { private JPanel contentPane; String[] Months = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" }; JDesktopPane desktopPane; ButtonGroup bG = new ButtonGroup(); JRadioButton radioButton, rdbtnNewRadioButton, radioButton_1, radioButton_2, radioButton_3, radioButton_4, radioButton_5, radioButton_6, radioButton_7, radioButton_8, radioButton_9, radioButton_10, radioButton_11, radioButton_12, radioButton_13, radioButton_14, radioButton_15, radioButton_16, radioButton_17, radioButton_18, radioButton_19, radioButton_20, radioButton_21, radioButton_22, radioButton_23, radioButton_24, radioButton_25, radioButton_26, radioButton_27, radioButton_28, radioButton_29; /** * Launch the application. */ public static void main(String[] args) { EventQueue.invokeLater(new Runnable() { public void run() { try { Calendar1 frame = new Calendar1(); frame.setVisible(true); } catch (Exception e) { e.printStackTrace(); } } }); } /** * Create the frame. */ @SuppressWarnings("unchecked") public Calendar1() { setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setBounds(100, 100, 521, 300); contentPane = new JPanel(); contentPane.setBorder(new EmptyBorder(5, 5, 5, 5)); setContentPane(contentPane); contentPane.setLayout(null); JComboBox comboBox = new JComboBox(Months); comboBox.setBounds(28, 16, 132, 27); contentPane.add(comboBox); comboBox.setSelectedIndex(0); comboBox.addActionListener(this); JLabel label = new JLabel("2014"); label.setBounds(350, 20, 61, 16); contentPane.add(label); desktopPane = new JDesktopPane(); desktopPane.setBackground(new Color(30, 144, 255)); desktopPane.setBounds(0, 63, 495, 188); contentPane.add(desktopPane); GridBagLayout gbl_desktopPane = new GridBagLayout(); gbl_desktopPane.columnWidths = new int[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; gbl_desktopPane.rowHeights = new int[] { 0, 0, 0, 0, 0, 0, 0, 0 }; gbl_desktopPane.columnWeights = new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, Double.MIN_VALUE }; gbl_desktopPane.rowWeights = new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, Double.MIN_VALUE }; desktopPane.setLayout(gbl_desktopPane); // JLabel lblSun = new JLabel("Sun"); // lblSun.setForeground(Color.RED); // // GridBagConstraints gbc_lblSun = new GridBagConstraints(); // gbc_lblSun.insets = new Insets(0, 0, 5, 5); // gbc_lblSun.gridx = 2; // gbc_lblSun.gridy = 0; // desktopPane.add(lblSun, gbc_lblSun); // // JLabel lblMon = new JLabel("Mon"); // GridBagConstraints gbc_lblMon = new GridBagConstraints(); // gbc_lblMon.insets = new Insets(0, 0, 5, 5); // gbc_lblMon.gridx = 4; // gbc_lblMon.gridy = 0; // desktopPane.add(lblMon, gbc_lblMon); // // JLabel lblTues = new JLabel("Tues"); // GridBagConstraints gbc_lblTues = new GridBagConstraints(); // gbc_lblTues.insets = new Insets(0, 0, 5, 5); // gbc_lblTues.gridx = 6; // gbc_lblTues.gridy = 0; // desktopPane.add(lblTues, gbc_lblTues); // // JLabel lblWed = new JLabel("Wed"); // GridBagConstraints gbc_lblWed = new GridBagConstraints(); // gbc_lblWed.insets = new Insets(0, 0, 5, 5); // gbc_lblWed.gridx = 8; // gbc_lblWed.gridy = 0; // desktopPane.add(lblWed, gbc_lblWed); // // JLabel lblThurs = new JLabel("Thurs"); // GridBagConstraints gbc_lblThurs = new GridBagConstraints(); // gbc_lblThurs.insets = new Insets(0, 0, 5, 5); // gbc_lblThurs.gridx = 10; // gbc_lblThurs.gridy = 0; // desktopPane.add(lblThurs, gbc_lblThurs); // // JLabel lblFri = new JLabel("Friday"); // GridBagConstraints gbc_lblFri = new GridBagConstraints(); // gbc_lblFri.insets = new Insets(0, 0, 5, 5); // gbc_lblFri.gridx = 12; // gbc_lblFri.gridy = 0; // desktopPane.add(lblFri, gbc_lblFri); // // JLabel lblSat = new JLabel("Sat"); // lblSat.setForeground(Color.RED); // GridBagConstraints gbc_lblSat = new GridBagConstraints(); // gbc_lblSat.insets = new Insets(0, 0, 5, 5); // gbc_lblSat.gridx = 14; // gbc_lblSat.gridy = 0; // desktopPane.add(lblSat, gbc_lblSat); radioButton = new JRadioButton("1"); GridBagConstraints gbc_radioButton = new GridBagConstraints(); gbc_radioButton.insets = new Insets(0, 0, 5, 5); gbc_radioButton.gridx = 8; gbc_radioButton.gridy = 1; desktopPane.add(radioButton, gbc_radioButton); bG.add(radioButton); rdbtnNewRadioButton = new JRadioButton("2"); GridBagConstraints gbc_rdbtnNewRadioButton = new GridBagConstraints(); gbc_rdbtnNewRadioButton.insets = new Insets(0, 0, 5, 5); gbc_rdbtnNewRadioButton.gridx = 10; gbc_rdbtnNewRadioButton.gridy = 1; desktopPane.add(rdbtnNewRadioButton, gbc_rdbtnNewRadioButton); bG.add(rdbtnNewRadioButton); radioButton_1 = new JRadioButton("3"); GridBagConstraints gbc_radioButton_1 = new GridBagConstraints(); gbc_radioButton_1.insets = new Insets(0, 0, 5, 5); gbc_radioButton_1.gridx = 12; gbc_radioButton_1.gridy = 1; desktopPane.add(radioButton_1, gbc_radioButton_1); bG.add(radioButton_1); radioButton_2 = new JRadioButton("4"); GridBagConstraints gbc_radioButton_2 = new GridBagConstraints(); gbc_radioButton_2.insets = new Insets(0, 0, 5, 5); gbc_radioButton_2.gridx = 14; gbc_radioButton_2.gridy = 1; desktopPane.add(radioButton_2, gbc_radioButton_2); bG.add(radioButton_2); radioButton_3 = new JRadioButton("5"); GridBagConstraints gbc_radioButton_3 = new GridBagConstraints(); gbc_radioButton_3.insets = new Insets(0, 0, 5, 5); gbc_radioButton_3.gridx = 2; gbc_radioButton_3.gridy = 2; desktopPane.add(radioButton_3, gbc_radioButton_3); bG.add(radioButton_3); radioButton_4 = new JRadioButton("6"); GridBagConstraints gbc_radioButton_4 = new GridBagConstraints(); gbc_radioButton_4.insets = new Insets(0, 0, 5, 5); gbc_radioButton_4.gridx = 4; gbc_radioButton_4.gridy = 2; desktopPane.add(radioButton_4, gbc_radioButton_4); bG.add(radioButton_4); radioButton_5 = new JRadioButton("7"); GridBagConstraints gbc_radioButton_5 = new GridBagConstraints(); gbc_radioButton_5.insets = new Insets(0, 0, 5, 5); gbc_radioButton_5.gridx = 6; gbc_radioButton_5.gridy = 2; desktopPane.add(radioButton_5, gbc_radioButton_5); bG.add(radioButton_5); radioButton_6 = new JRadioButton("8"); GridBagConstraints gbc_radioButton_6 = new GridBagConstraints(); gbc_radioButton_6.insets = new Insets(0, 0, 5, 5); gbc_radioButton_6.gridx = 8; gbc_radioButton_6.gridy = 2; desktopPane.add(radioButton_6, gbc_radioButton_6); bG.add(radioButton_6); radioButton_7 = new JRadioButton("9"); GridBagConstraints gbc_radioButton_7 = new GridBagConstraints(); gbc_radioButton_7.insets = new Insets(0, 0, 5, 5); gbc_radioButton_7.gridx = 10; gbc_radioButton_7.gridy = 2; desktopPane.add(radioButton_7, gbc_radioButton_7); bG.add(radioButton_7); radioButton_8 = new JRadioButton("10"); GridBagConstraints gbc_radioButton_8 = new GridBagConstraints(); gbc_radioButton_8.insets = new Insets(0, 0, 5, 5); gbc_radioButton_8.gridx = 12; gbc_radioButton_8.gridy = 2; desktopPane.add(radioButton_8, gbc_radioButton_8); bG.add(radioButton_8); radioButton_9 = new JRadioButton("11"); GridBagConstraints gbc_radioButton_9 = new GridBagConstraints(); gbc_radioButton_9.insets = new Insets(0, 0, 5, 5); gbc_radioButton_9.gridx = 14; gbc_radioButton_9.gridy = 2; desktopPane.add(radioButton_9, gbc_radioButton_9); bG.add(radioButton_9); radioButton_10 = new JRadioButton("12"); GridBagConstraints gbc_radioButton_10 = new GridBagConstraints(); gbc_radioButton_10.insets = new Insets(0, 0, 5, 5); gbc_radioButton_10.gridx = 2; gbc_radioButton_10.gridy = 3; desktopPane.add(radioButton_10, gbc_radioButton_10); bG.add(radioButton_10); radioButton_11 = new JRadioButton("13"); GridBagConstraints gbc_radioButton_11 = new GridBagConstraints(); gbc_radioButton_11.insets = new Insets(0, 0, 5, 5); gbc_radioButton_11.gridx = 4; gbc_radioButton_11.gridy = 3; desktopPane.add(radioButton_11, gbc_radioButton_11); bG.add(radioButton_11); radioButton_12 = new JRadioButton("14"); GridBagConstraints gbc_radioButton_12 = new GridBagConstraints(); gbc_radioButton_12.insets = new Insets(0, 0, 5, 5); gbc_radioButton_12.gridx = 6; gbc_radioButton_12.gridy = 3; desktopPane.add(radioButton_12, gbc_radioButton_12); bG.add(radioButton_12); radioButton_13 = new JRadioButton("15"); GridBagConstraints gbc_radioButton_13 = new GridBagConstraints(); gbc_radioButton_13.insets = new Insets(0, 0, 5, 5); gbc_radioButton_13.gridx = 8; gbc_radioButton_13.gridy = 3; desktopPane.add(radioButton_13, gbc_radioButton_13); bG.add(radioButton_13); radioButton_14 = new JRadioButton("16"); GridBagConstraints gbc_radioButton_14 = new GridBagConstraints(); gbc_radioButton_14.insets = new Insets(0, 0, 5, 5); gbc_radioButton_14.gridx = 10; gbc_radioButton_14.gridy = 3; desktopPane.add(radioButton_14, gbc_radioButton_14); bG.add(radioButton_14); radioButton_15 = new JRadioButton("17"); GridBagConstraints gbc_radioButton_15 = new GridBagConstraints(); gbc_radioButton_15.insets = new Insets(0, 0, 5, 5); gbc_radioButton_15.gridx = 12; gbc_radioButton_15.gridy = 3; desktopPane.add(radioButton_15, gbc_radioButton_15); bG.add(radioButton_15); radioButton_16 = new JRadioButton("18"); GridBagConstraints gbc_radioButton_16 = new GridBagConstraints(); gbc_radioButton_16.insets = new Insets(0, 0, 5, 5); gbc_radioButton_16.gridx = 14; gbc_radioButton_16.gridy = 3; desktopPane.add(radioButton_16, gbc_radioButton_16); bG.add(radioButton_16); radioButton_17 = new JRadioButton("19"); GridBagConstraints gbc_radioButton_17 = new GridBagConstraints(); gbc_radioButton_17.insets = new Insets(0, 0, 5, 5); gbc_radioButton_17.gridx = 2; gbc_radioButton_17.gridy = 4; desktopPane.add(radioButton_17, gbc_radioButton_17); bG.add(radioButton_17); radioButton_18 = new JRadioButton("20"); GridBagConstraints gbc_radioButton_18 = new GridBagConstraints(); gbc_radioButton_18.insets = new Insets(0, 0, 5, 5); gbc_radioButton_18.gridx = 4; gbc_radioButton_18.gridy = 4; desktopPane.add(radioButton_18, gbc_radioButton_18); bG.add(radioButton_18); radioButton_19 = new JRadioButton("21"); GridBagConstraints gbc_radioButton_19 = new GridBagConstraints(); gbc_radioButton_19.insets = new Insets(0, 0, 5, 5); gbc_radioButton_19.gridx = 6; gbc_radioButton_19.gridy = 4; desktopPane.add(radioButton_19, gbc_radioButton_19); bG.add(radioButton_19); radioButton_20 = new JRadioButton("22"); GridBagConstraints gbc_radioButton_20 = new GridBagConstraints(); gbc_radioButton_20.insets = new Insets(0, 0, 5, 5); gbc_radioButton_20.gridx = 8; gbc_radioButton_20.gridy = 4; desktopPane.add(radioButton_20, gbc_radioButton_20); bG.add(radioButton_20); radioButton_21 = new JRadioButton("23"); GridBagConstraints gbc_radioButton_21 = new GridBagConstraints(); gbc_radioButton_21.insets = new Insets(0, 0, 5, 5); gbc_radioButton_21.gridx = 10; gbc_radioButton_21.gridy = 4; desktopPane.add(radioButton_21, gbc_radioButton_21); bG.add(radioButton_21); radioButton_22 = new JRadioButton("24"); GridBagConstraints gbc_radioButton_22 = new GridBagConstraints(); gbc_radioButton_22.insets = new Insets(0, 0, 5, 5); gbc_radioButton_22.gridx = 12; gbc_radioButton_22.gridy = 4; desktopPane.add(radioButton_22, gbc_radioButton_22); bG.add(radioButton_22); radioButton_23 = new JRadioButton("25"); GridBagConstraints gbc_radioButton_23 = new GridBagConstraints(); gbc_radioButton_23.insets = new Insets(0, 0, 5, 5); gbc_radioButton_23.gridx = 14; gbc_radioButton_23.gridy = 4; desktopPane.add(radioButton_23, gbc_radioButton_23); bG.add(radioButton_23); radioButton_24 = new JRadioButton("26"); GridBagConstraints gbc_radioButton_24 = new GridBagConstraints(); gbc_radioButton_24.insets = new Insets(0, 0, 5, 5); gbc_radioButton_24.gridx = 2; gbc_radioButton_24.gridy = 5; desktopPane.add(radioButton_24, gbc_radioButton_24); bG.add(radioButton_24); radioButton_25 = new JRadioButton("27"); GridBagConstraints gbc_radioButton_25 = new GridBagConstraints(); gbc_radioButton_25.insets = new Insets(0, 0, 5, 5); gbc_radioButton_25.gridx = 4; gbc_radioButton_25.gridy = 5; desktopPane.add(radioButton_25, gbc_radioButton_25); bG.add(radioButton_25); radioButton_26 = new JRadioButton("28"); GridBagConstraints gbc_radioButton_26 = new GridBagConstraints(); gbc_radioButton_26.insets = new Insets(0, 0, 5, 5); gbc_radioButton_26.gridx = 6; gbc_radioButton_26.gridy = 5; desktopPane.add(radioButton_26, gbc_radioButton_26); bG.add(radioButton_26); radioButton_27 = new JRadioButton("29"); GridBagConstraints gbc_radioButton_27 = new GridBagConstraints(); gbc_radioButton_27.insets = new Insets(0, 0, 5, 5); gbc_radioButton_27.gridx = 8; gbc_radioButton_27.gridy = 5; desktopPane.add(radioButton_27, gbc_radioButton_27); bG.add(radioButton_27); radioButton_28 = new JRadioButton("30"); GridBagConstraints gbc_radioButton_28 = new GridBagConstraints(); gbc_radioButton_28.insets = new Insets(0, 0, 5, 5); gbc_radioButton_28.gridx = 10; gbc_radioButton_28.gridy = 5; desktopPane.add(radioButton_28, gbc_radioButton_28); bG.add(radioButton_28); radioButton_29 = new JRadioButton("31"); GridBagConstraints gbc_radioButton_29 = new GridBagConstraints(); gbc_radioButton_29.insets = new Insets(0, 0, 5, 5); gbc_radioButton_29.gridx = 12; gbc_radioButton_29.gridy = 5; desktopPane.add(radioButton_29, gbc_radioButton_29); bG.add(radioButton_29); } @Override public void actionPerformed(ActionEvent e) { JComboBox cb = (JComboBox) e.getSource(); String months = (String) cb.getSelectedItem(); if (months.equals("February")) { desktopPane.remove(radioButton_28); desktopPane.revalidate(); } } } I'm trying to use the combobox to remove radiobuttons in the actionperformed, but when I run the program, nothing happens, nor can I enable new buttons in the actionperformed. Thank you so much in advance for helping me out.

    Read the article

  • Embedding ADF UI Components into OAF regions

    - by Juan Camilo Ruiz
    Having finished the 2 Webcast on ADF integration with Oracle E-Business Suite, Sara Woodhull, Principal Product Manager on the Oracle E-Business Suite Applications Technology team and I are going to continue adding entries to the series on this topic, trying to cover as many use cases as possible. In this entry, Sara created an overview on how Oracle ADF pages can be embedded into an Oracle Application Framework region. This is a very interesting approach that will enable those of you who are exploring ADF as a technology stack to enhanced some of the Oracle E-Business Suite flows and leverage your skill on Oracle Applications Framework (OAF). In upcoming entries we will start unveiling the internals needed to achieve session sharing between the regions. Stay tuned for more entries and enjoy this new post.   Document Scope This document only covers information that is specific to embedding an Oracle ADF page in an Oracle Application Framework–based page. It assumes knowledge of Oracle ADF and Oracle Application Framework development. It also assumes knowledge of the material in My Oracle Support Note 974949.1, “Oracle E-Business Suite SDK for Java” and My Oracle Support Note 1296491.1, "FAQ for Integration of Oracle E-Business Suite and Oracle Application Development Framework (ADF) Applications". Prerequisite Patch Download Patch 12726556:R12.FND.B from My Oracle Support and install it. The implementation described below requires Patch 12726556:R12.FND.B to provide the accessors for the ADF page. This patch is required in addition to the Oracle E-Business Suite SDK for Java patch described in My Oracle Support Note 974949.1. Development Environments You need two different JDeveloper environments: Oracle ADF and OA Framework. Oracle ADF Development Environment You build your Oracle ADF page using JDeveloper 11g. You should use JDeveloper 11g R1 (the latest is 11.1.1.6.0) if you need to use other products in the Oracle Fusion Middleware Stack, such as Oracle WebCenter, Oracle SOA Suite, or BI. You should use JDeveloper 11g R2 (the latest is 11.1.2.3.0) if you do not need other Oracle Fusion Middleware products. JDeveloper 11g R2 is an Oracle ADF-specific release that supports the latest Java EE standards and has various core improvements. Oracle Application Framework Development Environment Build your OA Framework page using a development environment corresponding to your Oracle E-Business Suite version. You must use Release 12.1.2 or later because the rich content container was introduced in Release 12.1.2. See “OA Framework - How to find the correct version of JDeveloper to use with eBusiness Suite 11i or Release 12.x” (My Oracle Support Doc ID 416708.1). Building your Oracle ADF Page Typically you build your ADF page using the session management feature of the Oracle E-Business Suite SDK for Java as described in My Oracle Support Note 974949.1. Also see My Oracle Support Note 1296491.1, "FAQ for Integration of Oracle E-Business Suite and Oracle Application Development Framework (ADF) Applications". Building an ADF Page with the Hierarchy Viewer If you are using the ADF hierarchy viewer, you should set up the structure and settings of the ADF page as follows or the hierarchy viewer may not fill the entire area it is supposed to fill (especially a problem in Firefox). Create a stretchable component as the parent component for the hierarchy viewer, such as af:panelStretchLayout (underneath the af:form component in the structure). Use af:panelStretchLayout for Oracle ADF 11.1.1.6 and earlier. For later versions of Oracle ADF, use af:panelGridLayout. Create your hierarchy viewer component inside the stretchable component. Create Function in Oracle E-Business Suite Instance In your Oracle E-Business Suite instance, create a function for your ADF page with the following parameters. You can use either the Functions window in the System Administrator responsibility or the Functions page in the Functional Administrator responsibility. Function Function Name Type=External ADF Function (ADFX) HTML Call=GWY.jsp?targetPage=faces/<your ADF page> ">You must also add your function to an Oracle E-Business Suite menu or permission set and set up function security or role-based access control (RBAC) so that the user has authorization to access the function. If you do not want the function to appear on the navigation menu, add the function without a menu prompt. See the Oracle E-Business Suite System Administrator's Guide Documentation Set for more information. Testing the Function from the Oracle E-Business Suite Home Page It’s a good idea to test launching your ADF page from the Oracle E-Business Suite Home Page. Add your function to the navigation menu for your responsibility with a prompt and try launching it. If your ADF page expects parameters from the surrounding page, those might not be available, however. Setting up the Oracle Application Framework Rich Container Once you have built your Oracle ADF 11g page, you need to embed it in your Oracle Application Framework page. Create Rich Content Container in your OA Framework JDeveloper environment In the OA Extension Structure pane for your OAF page, select the region where you want to add the rich content, and add a richContainer item to the region. Set the following properties on the richContainer item: id Content Type=Others (for Release 12.1.3. This property value may change in a future release.) Destination Function=[function code] Width (in pixels or percent, such as 100%) Height (in pixels) Parameters=[any parameters your Oracle ADF page is expecting to receive from the Oracle Application Framework page] Parameters In the Parameters property, specify parameters that will be passed to the embedded content as a list of comma-separated, name-value pairs. Dynamic parameters may be specified as paramName={@viewAttr}. Dynamic Rich Content Container Properties If you want your rich content container to display a different Oracle ADF page depending on other information, you would set up a different function for each different Oracle ADF page. You would then set the Destination Function and Parameters properties programmatically, instead of setting them in the Property Inspector. In the processRequest() method of your Oracle Application Framework page controller, where OAFRichContentPage is the ID of your richContainer item and the parameters are whatever parameters your ADF page expects, your code might look similar to this code fragment: OARichContainerBean richBean = (OARichContainerBean) webBean.findChildRecursive("OAFRichContentPage"); if(richBean != null){ if(isFirstCondition){ richBean.setFunctionName("ADF_EXAMPLE_EMBEDDED"); richBean.setParameters("ParamLoginPersonId="+loginPersonId +"&ParamPersonId="+personId+"&ParamUserId="+userId +"&ParamRespId="+respId+"&ParamRespApplId="+respApplId +"&ParamFromOA=Y"+"&ParamSecurityGroupId="+securityGroupId); } else if(isSecondCondition){ richBean.setFunctionName("ADF_EXAMPLE_OTHER_FUNCTION"); richBean.setParameters("ParamLoginPersonId=" +loginPersonId+"&ParamPersonId="+personId +"&ParamUserId="+userId+"&ParamRespId="+respId +"&ParamRespApplId="+respApplId +"&ParamFromOA=Y" +"&ParamSecurityGroupId="+securityGroupId); } }

    Read the article

  • C#: System.Collections.Concurrent.ConcurrentQueue vs. Queue

    - by James Michael Hare
    I love new toys, so of course when .NET 4.0 came out I felt like the proverbial kid in the candy store!  Now, some people get all excited about the IDE and it’s new features or about changes to WPF and Silver Light and yes, those are all very fine and grand.  But me, I get all excited about things that tend to affect my life on the backside of development.  That’s why when I heard there were going to be concurrent container implementations in the latest version of .NET I was salivating like Pavlov’s dog at the dinner bell. They seem so simple, really, that one could easily overlook them.  Essentially they are implementations of containers (many that mirror the generic collections, others are new) that have either been optimized with very efficient, limited, or no locking but are still completely thread safe -- and I just had to see what kind of an improvement that would translate into. Since part of my job as a solutions architect here where I work is to help design, develop, and maintain the systems that process tons of requests each second, the thought of extremely efficient thread-safe containers was extremely appealing.  Of course, they also rolled out a whole parallel development framework which I won’t get into in this post but will cover bits and pieces of as time goes by. This time, I was mainly curious as to how well these new concurrent containers would perform compared to areas in our code where we manually synchronize them using lock or some other mechanism.  So I set about to run a processing test with a series of producers and consumers that would be either processing a traditional System.Collections.Generic.Queue or a System.Collection.Concurrent.ConcurrentQueue. Now, I wanted to keep the code as common as possible to make sure that the only variance was the container, so I created a test Producer and a test Consumer.  The test Producer takes an Action<string> delegate which is responsible for taking a string and placing it on whichever queue we’re testing in a thread-safe manner: 1: internal class Producer 2: { 3: public int Iterations { get; set; } 4: public Action<string> ProduceDelegate { get; set; } 5: 6: public void Produce() 7: { 8: for (int i = 0; i < Iterations; i++) 9: { 10: ProduceDelegate(“Hello”); 11: } 12: } 13: } Then likewise, I created a consumer that took a Func<string> that would read from whichever queue we’re testing and return either the string if data exists or null if not.  Then, if the item doesn’t exist, it will do a 10 ms wait before testing again.  Once all the producers are done and join the main thread, a flag will be set in each of the consumers to tell them once the queue is empty they can shut down since no other data is coming: 1: internal class Consumer 2: { 3: public Func<string> ConsumeDelegate { get; set; } 4: public bool HaltWhenEmpty { get; set; } 5: 6: public void Consume() 7: { 8: bool processing = true; 9: 10: while (processing) 11: { 12: string result = ConsumeDelegate(); 13: 14: if(result == null) 15: { 16: if (HaltWhenEmpty) 17: { 18: processing = false; 19: } 20: else 21: { 22: Thread.Sleep(TimeSpan.FromMilliseconds(10)); 23: } 24: } 25: else 26: { 27: DoWork(); // do something non-trivial so consumers lag behind a bit 28: } 29: } 30: } 31: } Okay, now that we’ve done that, we can launch threads of varying numbers using lambdas for each different method of production/consumption.  First let's look at the lambdas for a typical System.Collections.Generics.Queue with locking: 1: // lambda for putting to typical Queue with locking... 2: var productionDelegate = s => 3: { 4: lock (_mutex) 5: { 6: _mutexQueue.Enqueue(s); 7: } 8: }; 9:  10: // and lambda for typical getting from Queue with locking... 11: var consumptionDelegate = () => 12: { 13: lock (_mutex) 14: { 15: if (_mutexQueue.Count > 0) 16: { 17: return _mutexQueue.Dequeue(); 18: } 19: } 20: return null; 21: }; Nothing new or interesting here.  Just typical locks on an internal object instance.  Now let's look at using a ConcurrentQueue from the System.Collections.Concurrent library: 1: // lambda for putting to a ConcurrentQueue, notice it needs no locking! 2: var productionDelegate = s => 3: { 4: _concurrentQueue.Enqueue(s); 5: }; 6:  7: // lambda for getting from a ConcurrentQueue, once again, no locking required. 8: var consumptionDelegate = () => 9: { 10: string s; 11: return _concurrentQueue.TryDequeue(out s) ? s : null; 12: }; So I pass each of these lambdas and the number of producer and consumers threads to launch and take a look at the timing results.  Basically I’m timing from the time all threads start and begin producing/consuming to the time that all threads rejoin.  I won't bore you with the test code, basically it just launches code that creates the producers and consumers and launches them in their own threads, then waits for them all to rejoin.  The following are the timings from the start of all threads to the Join() on all threads completing.  The producers create 10,000,000 items evenly between themselves and then when all producers are done they trigger the consumers to stop once the queue is empty. These are the results in milliseconds from the ordinary Queue with locking: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 4284 5153 4226 4554.33 4: 10 10 4044 3831 5010 4295.00 5: 100 100 5497 5378 5612 5495.67 6: 1000 1000 24234 25409 27160 25601.00 And the following are the results in milliseconds from the ConcurrentQueue with no locking necessary: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 3647 3643 3718 3669.33 4: 10 10 2311 2136 2142 2196.33 5: 100 100 2480 2416 2190 2362.00 6: 1000 1000 7289 6897 7061 7082.33 Note that even though obviously 2000 threads is quite extreme, the concurrent queue actually scales really well, whereas the traditional queue with simple locking scales much more poorly. I love the new concurrent collections, they look so much simpler without littering your code with the locking logic, and they perform much better.  All in all, a great new toy to add to your arsenal of multi-threaded processing!

    Read the article

  • Using Unity – Part 1

    - by nmarun
    I have been going through implementing some IoC pattern using Unity and so I decided to share my learnings (I know that’s not an English word, but you get the point). Ok, so I have an ASP.net project named ProductWeb and a class library called ProductModel. In the model library, I have a class called Product: 1: public class Product 2: { 3: public string Name { get; set; } 4: public string Description { get; set; } 5:  6: public Product() 7: { 8: Name = "iPad"; 9: Description = "Not just a reader!"; 10: } 11:  12: public string WriteProductDetails() 13: { 14: return string.Format("Name: {0} Description: {1}", Name, Description); 15: } 16: } In the Page_Load event of the default.aspx, I’ll need something like: 1: Product product = new Product(); 2: productDetailsLabel.Text = product.WriteProductDetails(); Now, let’s go ‘Unity’fy this application. I assume you have all the bits for the pattern. If not, get it from here. I found this schematic representation of Unity pattern from the above link. This image might not make much sense to you now, but as we proceed, things will get better. The first step to implement the Inversion of Control pattern is to create interfaces that your types will implement. An IProduct interface is added to the ProductModel project. 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } Let’s make our Product class to implement the IProduct interface. The application will compile and run as before despite the changes made. Add the following references to your web project: Microsoft.Practices.Unity Microsoft.Practices.Unity.Configuration Microsoft.Practices.Unity.StaticFactory Microsoft.Practices.ObjectBuilder2 We need to add a few lines to the web.config file. The line below tells what version of Unity pattern we’ll be using. 1: <configSections> 2: <section name="unity" type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection, Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> 3: </configSections> Add another block with the same name as the section name declared above – ‘unity’. 1: <unity> 2: <typeAliases> 3: <!--Custom object types--> 4: <typeAlias alias="IProduct" type="ProductModel.IProduct, ProductModel"/> 5: <typeAlias alias="Product" type="ProductModel.Product, ProductModel"/> 6: </typeAliases> 7: <containers> 8: <container name="unityContainer"> 9: <types> 10: <type type="IProduct" mapTo="Product"/> 11: </types> 12: </container> 13: </containers> 14: </unity> From the Unity Configuration schematic shown above, you see that the ‘unity’ block has a ‘typeAliases’ and a ‘containers’ segment. The typeAlias element gives a ‘short-name’ for a type. This ‘short-name’ can be used to point to this type any where in the configuration file (web.config in our case, but all this information could be coming from an external xml file as well). The container element holds all the mapping information. This container is referenced through its name attribute in the code and you can have multiple of these container elements in the containers segment. The ‘type’ element in line 10 basically says: ‘When Unity requests to resolve the alias IProduct, return an instance of whatever the short-name of Product points to’. This is the most basic piece of Unity pattern and all of this is accomplished purely through configuration. So, in future you have a change in your model, all you need to do is - implement IProduct on the new model class and - either add a typeAlias for the new type and point the mapTo attribute to the new alias declared - or modify the mapTo attribute of the type element to point to the new alias (as the case may be). Now for the calling code. It’s a good idea to store your unity container details in the Application cache, as this is rarely bound to change and also adds for better performance. The Global.asax.cs file comes for our rescue: 1: protected void Application_Start(object sender, EventArgs e) 2: { 3: // create and populate a new Unity container from configuration 4: IUnityContainer unityContainer = new UnityContainer(); 5: UnityConfigurationSection section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); 6: section.Containers["unityContainer"].Configure(unityContainer); 7: Application["UnityContainer"] = unityContainer; 8: } 9:  10: protected void Application_End(object sender, EventArgs e) 11: { 12: Application["UnityContainer"] = null; 13: } All this says is: create an instance of UnityContainer() and read the ‘unity’ section from the configSections segment of the web.config file. Then get the container named ‘unityContainer’ and store it in the Application cache. In my code-behind file, I’ll make use of this UnityContainer to create an instance of the Product type. 1: public partial class _Default : Page 2: { 3: private IUnityContainer unityContainer; 4: protected void Page_Load(object sender, EventArgs e) 5: { 6: unityContainer = Application["UnityContainer"] as IUnityContainer; 7: if (unityContainer == null) 8: { 9: productDetailsLabel.Text = "ERROR: Unity Container not populated in Global.asax.<p />"; 10: } 11: else 12: { 13: IProduct productInstance = unityContainer.Resolve<IProduct>(); 14: productDetailsLabel.Text = productInstance.WriteProductDetails(); 15: } 16: } 17: } Looking the ‘else’ block, I’m asking the unityContainer object to resolve the IProduct type. All this does, is to look at the matching type in the container, read its mapTo attribute value, get the full name from the alias and create an instance of the Product class. Fabulous!! I’ll go more in detail in the next blog. The code for this blog can be found here.

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • How to resolve Unmet dependencies error?

    - by dandelion
    Using my new install of Ubuntu I haven't been able to download anything from the software center except the maryo game without the following error: The following packages have unmet dependencies: vlc: Depends: vlc-nox (= 1.1.12-2~oneiric1) but 1.1.12-2~oneiric1 is to be installed Depends: libaa1 (>= 1.4p5) but 1.4p5-38build1 is to be installed Depends: libavcodec-extra-53 (>= 4:0.7-1) but 4:0.7.3ubuntu0.11.10.1 is to be installed Depends: libavutil-extra-51 (>= 4:0.7-1) but 4:0.7.3ubuntu0.11.10.1 is to be installed Depends: libc6 (>= 2.8) but 2.13-20ubuntu5.1 is to be installed Depends: libfreetype6 (>= 2.2.1) but 2.4.4-2ubuntu1.1 is to be installed Depends: libgcc1 (>= 1:4.1.1) but 1:4.6.1-9ubuntu3 is to be installed Depends: libqtcore4 (>= 4:4.7.0~beta1) but 4:4.7.4-0ubuntu8.1 is to be installed Depends: libqtgui4 (>= 4:4.5.3) but 4:4.7.4-0ubuntu8.1 is to be installed Depends: libsdl-image1.2 (>= 1.2.10) but 1.2.10-2.1 is to be installed Depends: libsdl1.2debian (>= 1.2.10-1) but 1.2.14-6.1ubuntu4 is to be installed Depends: libstdc++6 (>= 4.6) but 4.6.1-9ubuntu3 is to be installed Depends: libva-x11-1 (> 1.0.12~) but it is not going to be installed Depends: libva1 (> 1.0.12~) but it is not going to be installed Depends: libxcb-randr0 (>= 1.1) but it is not going to be installed Depends: libxcb-xv0 (>= 1.2) but it is not going to be installed Depends: zlib1g (>= 1:1.2.3.3.dfsg) but 1:1.2.3.4.dfsg-3ubuntu3 is to be installed My system specs are version 11.10 64 bit. ge-g41m-es2l mother board amd 5770 video card wdc green 500 gig hard drive I have recently changed the motherboard, but otherwise have not changed my computer from when I used to be running the same version of Ubuntu. edit still unable to download output of sudo apt-get update output of sudo apt-get update ~$ sudo apt-get update Ign http://extras.ubuntu.com oneiric InRelease Ign http://security.ubuntu.com oneiric-security InRelease Ign http://archive.canonical.com oneiric InRelease Ign http://ppa.launchpad.net oneiric InRelease Ign http://us.archive.ubuntu.com oneiric InRelease Ign http://us.archive.ubuntu.com oneiric-updates InRelease Ign http://us.archive.ubuntu.com oneiric-backports InRelease Hit http://extras.ubuntu.com oneiric Release.gpg Hit http://archive.canonical.com oneiric Release.gpg Hit http://security.ubuntu.com oneiric-security Release.gpg Hit http://ppa.launchpad.net oneiric Release.gpg Ign http://us.archive.ubuntu.com oneiric-proposed InRelease Hit http://us.archive.ubuntu.com oneiric Release.gpg Hit http://extras.ubuntu.com oneiric Release Hit http://archive.canonical.com oneiric Release Hit http://security.ubuntu.com oneiric-security Release Hit http://ppa.launchpad.net oneiric Release Hit http://us.archive.ubuntu.com oneiric-updates Release.gpg Hit http://us.archive.ubuntu.com oneiric-backports Release.gpg Hit http://extras.ubuntu.com oneiric/main Sources Hit http://archive.canonical.com oneiric/partner i386 Packages Hit http://security.ubuntu.com oneiric-security/main Sources Hit http://ppa.launchpad.net oneiric/main Sources Hit http://us.archive.ubuntu.com oneiric-proposed Release.gpg Hit http://extras.ubuntu.com oneiric/main i386 Packages Ign http://extras.ubuntu.com oneiric/main TranslationIndex Hit http://ppa.launchpad.net oneiric/main i386 Packages Ign http://ppa.launchpad.net oneiric/main TranslationIndex Ign http://archive.canonical.com oneiric/partner TranslationIndex Hit http://security.ubuntu.com oneiric-security/restricted Sources Hit http://security.ubuntu.com oneiric-security/universe Sources Hit http://security.ubuntu.com oneiric-security/multiverse Sources Hit http://security.ubuntu.com oneiric-security/main i386 Packages Hit http://security.ubuntu.com oneiric-security/restricted i386 Packages Hit http://us.archive.ubuntu.com oneiric Release Hit http://us.archive.ubuntu.com oneiric-updates Release Hit http://security.ubuntu.com oneiric-security/universe i386 Packages Hit http://security.ubuntu.com oneiric-security/multiverse i386 Packages Hit http://security.ubuntu.com oneiric-security/main TranslationIndex Hit http://security.ubuntu.com oneiric-security/multiverse TranslationIndex Hit http://security.ubuntu.com oneiric-security/restricted TranslationIndex Hit http://security.ubuntu.com oneiric-security/universe TranslationIndex Hit http://us.archive.ubuntu.com oneiric-backports Release Hit http://security.ubuntu.com oneiric-security/main Translation-en Hit http://security.ubuntu.com oneiric-security/multiverse Translation-en Hit http://us.archive.ubuntu.com oneiric-proposed Release Hit http://us.archive.ubuntu.com oneiric/main Sources Hit http://us.archive.ubuntu.com oneiric/restricted Sources Hit http://us.archive.ubuntu.com oneiric/universe Sources Hit http://us.archive.ubuntu.com oneiric/multiverse Sources Hit http://security.ubuntu.com oneiric-security/restricted Translation-en Hit http://us.archive.ubuntu.com oneiric/restricted i386 Packages Hit http://us.archive.ubuntu.com oneiric/universe i386 Packages Hit http://us.archive.ubuntu.com oneiric/multiverse i386 Packages Hit http://us.archive.ubuntu.com oneiric/main TranslationIndex Hit http://us.archive.ubuntu.com oneiric/multiverse TranslationIndex Hit http://us.archive.ubuntu.com oneiric/restricted TranslationIndex Hit http://us.archive.ubuntu.com oneiric/universe TranslationIndex Hit http://us.archive.ubuntu.com oneiric-updates/main Sources Hit http://us.archive.ubuntu.com oneiric-updates/restricted Sources Hit http://security.ubuntu.com oneiric-security/universe Translation-en Hit http://us.archive.ubuntu.com oneiric-updates/universe Sources Hit http://us.archive.ubuntu.com oneiric-updates/multiverse Sources Hit http://us.archive.ubuntu.com oneiric-updates/main i386 Packages Hit http://us.archive.ubuntu.com oneiric-updates/restricted i386 Packages Hit http://us.archive.ubuntu.com oneiric-updates/universe i386 Packages Hit http://us.archive.ubuntu.com oneiric-updates/multiverse i386 Packages Hit http://us.archive.ubuntu.com oneiric-updates/main TranslationIndex Hit http://us.archive.ubuntu.com oneiric-updates/multiverse TranslationIndex Hit http://us.archive.ubuntu.com oneiric-updates/restricted TranslationIndex Hit http://us.archive.ubuntu.com oneiric-updates/universe TranslationIndex Hit http://us.archive.ubuntu.com oneiric-backports/main Sources Hit http://us.archive.ubuntu.com oneiric-backports/restricted Sources Hit http://us.archive.ubuntu.com oneiric-backports/universe Sources Hit http://us.archive.ubuntu.com oneiric-backports/multiverse Sources Hit http://us.archive.ubuntu.com oneiric-backports/main i386 Packages Hit http://us.archive.ubuntu.com oneiric-backports/restricted i386 Packages Hit http://us.archive.ubuntu.com oneiric-backports/universe i386 Packages Hit http://us.archive.ubuntu.com oneiric-backports/multiverse i386 Packages Hit http://us.archive.ubuntu.com oneiric-backports/main TranslationIndex Hit http://us.archive.ubuntu.com oneiric-backports/multiverse TranslationIndex Hit http://us.archive.ubuntu.com oneiric-backports/restricted TranslationIndex Hit http://us.archive.ubuntu.com oneiric-backports/universe TranslationIndex Ign http://extras.ubuntu.com oneiric/main Translation-en_US Ign http://ppa.launchpad.net oneiric/main Translation-en_US Hit http://us.archive.ubuntu.com oneiric-proposed/restricted i386 Packages Hit http://us.archive.ubuntu.com oneiric-proposed/main i386 Packages Hit http://us.archive.ubuntu.com oneiric-proposed/multiverse i386 Packages Hit http://us.archive.ubuntu.com oneiric-proposed/universe i386 Packages Hit http://us.archive.ubuntu.com oneiric-proposed/main TranslationIndex Hit http://us.archive.ubuntu.com oneiric-proposed/multiverse TranslationIndex Hit http://us.archive.ubuntu.com oneiric-proposed/restricted TranslationIndex Hit http://us.archive.ubuntu.com oneiric-proposed/universe TranslationIndex Ign http://archive.canonical.com oneiric/partner Translation-en_US Ign http://extras.ubuntu.com oneiric/main Translation-en Ign http://ppa.launchpad.net oneiric/main Translation-en Ign http://archive.canonical.com oneiric/partner Translation-en Get:1 http://us.archive.ubuntu.com oneiric/main i386 Packages [1,583 kB] Hit http://us.archive.ubuntu.com oneiric/main Translation-en Hit http://us.archive.ubuntu.com oneiric/multiverse Translation-en Hit http://us.archive.ubuntu.com oneiric/restricted Translation-en Hit http://us.archive.ubuntu.com oneiric/universe Translation-en Hit http://us.archive.ubuntu.com oneiric-updates/main Translation-en Hit http://us.archive.ubuntu.com oneiric-updates/multiverse Translation-en Hit http://us.archive.ubuntu.com oneiric-updates/restricted Translation-en Hit http://us.archive.ubuntu.com oneiric-updates/universe Translation-en Hit http://us.archive.ubuntu.com oneiric-backports/main Translation-en Hit http://us.archive.ubuntu.com oneiric-backports/multiverse Translation-en Hit http://us.archive.ubuntu.com oneiric-backports/restricted Translation-en Hit http://us.archive.ubuntu.com oneiric-backports/universe Translation-en Hit http://us.archive.ubuntu.com oneiric-proposed/main Translation-en Hit http://us.archive.ubuntu.com oneiric-proposed/multiverse Translation-en Hit http://us.archive.ubuntu.com oneiric-proposed/restricted Translation-en Hit http://us.archive.ubuntu.com oneiric-proposed/universe Translation-en Err http://us.archive.ubuntu.com oneiric/main i386 Packages 404 Not Found [IP: 91.189.92.179 80] Fetched 1 B in 2s (0 B/s) W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/oneiric/main/binary-i386/Packages 404 Not Found [IP: 91.189.92.179 80] E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • Why do apache2 upgrades remove and not re-install libapache2-mod-php5?

    - by nutznboltz
    We repeatedly see that when an apache2 update arrives and is installed it causes the libapache2-mod-php5 package to be removed and does not subsequently re-install it automatically. We must subsequently re-install the libapache2-mod-php5 manually in order to restore functionality to our web server. Please see the following github gist, it is a contiguous section of our server's dpkg.log showing the November 14, 2011 update to apache2: https://gist.github.com/1368361 it includes 2011-11-14 11:22:18 remove libapache2-mod-php5 5.3.2-1ubuntu4.10 5.3.2-1ubuntu4.10 Is this a known issue? Do other people see this too? I could not find any launchpad bug reports about it. Platform details: $ lsb_release -ds Ubuntu 10.04.3 LTS $ uname -srvm Linux 2.6.38-12-virtual #51~lucid1-Ubuntu SMP Thu Sep 29 20:27:50 UTC 2011 x86_64 $ dpkg -l | awk '/ii.*apache/ {print $2 " " $3 }' apache2 2.2.14-5ubuntu8.7 apache2-mpm-prefork 2.2.14-5ubuntu8.7 apache2-utils 2.2.14-5ubuntu8.7 apache2.2-bin 2.2.14-5ubuntu8.7 apache2.2-common 2.2.14-5ubuntu8.7 libapache2-mod-authnz-external 3.2.4-2+squeeze1build0.10.04.1 libapache2-mod-php5 5.3.2-1ubuntu4.10 Thanks At a high-level the update process looks like: package package_name do action :upgrade case node[:platform] when 'centos', 'redhat', 'scientific' options '--disableplugin=fastestmirror' when 'ubuntu' options '-o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold"' end end But at a lower level def install_package(name, version) run_command_with_systems_locale( :command = "apt-get -q -y#{expand_options(@new_resource.options)} install #{name}=#{version}", :environment = { "DEBIAN_FRONTEND" = "noninteractive" } ) end def upgrade_package(name, version) install_package(name, version) end So Chef is using "install" to do "update". This sort of moves the question around to "how does apt-get safe-upgrade" remember to re-install libapache-mod-php5? The exact sequence of packages that triggered this was: apache2 apache2-mpm-prefork apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common But the code is attempting to run checks to make sure the packages in that list are installed already before attempting to "upgrade" them. case node[:platform] when 'debian', 'centos', 'fedora', 'redhat', 'scientific', 'ubuntu' # first primitive way is to define the updates in the recipe # data bags will be used later %w/ apache2 apache2-mpm-prefork apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common /.each{ |package_name| Chef::Log.debug("is #{package_name} among local packages available for changes?") next unless node[:packages][:changes].keys.include?(package_name) Chef::Log.debug("is #{package_name} available for upgrade?") next unless node[:packages][:changes][package_name][:action] == 'upgrade' package package_name do action :upgrade case node[:platform] when 'centos', 'redhat', 'scientific' options '--disableplugin=fastestmirror' when 'ubuntu' options '-o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold"' end end tag('upgraded') } # after upgrading everything, run yum cache updater if tagged?('upgraded') # Remove old orphaned dependencies and kernel images and kernel headers etc. # Remove cached deb files. case node[:platform] when 'ubuntu' execute 'apt-get -y autoremove' execute 'apt-get clean' # Re-check what updates are available soon. when 'centos', 'fedora', 'redhat', 'scientific' node[:packages][:last_time_we_looked_at_yum] = 0 end untag('upgraded') end end But it's clear that it fails since the dpkg.log has 2011-11-14 11:22:25 install apache2-mpm-worker 2.2.14-5ubuntu8.7 on a system which does not currently have apache2-mpm-worker. I will have to discuss this with the author, thanks again.

    Read the article

< Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >